Bibliography

[AUMFN21]

José C Abadillo-Uriel, Biel Martinez, Michele Filippone, and Yann-Michel Niquet. Two-body wigner molecularization in asymmetric quantum dot spin qubits. Phys. Rev. B, 104(19):195305, 2021.

[AGQ+22]

Christopher R Anderson, Mark F Gyure, Sam Quinn, Andrew Pan, Richard S Ross, and Andrey A Kiselev. High-precision real-space simulation of electrostatically confined few-electron states. AIP Advances, 2022.

[AM76]

N. W. Ashcroft and N. D. Mermin. Solid State Physics. Brooks Cole, 1976.

[BSP16]

Amartya S Banerjee, Phanish Suryanarayana, and John E Pask. Periodic Pulay method for robust and efficient convergence acceleration of self-consistent field iterations. Chemical Physics Letters, 647:31–35, 2016.

[BKM+13]

Rami Barends, Julian Kelly, Anthony Megrant, Daniel Sank, Evan Jeffrey, Yu Chen, Yi Yin, Ben Chiaro, Josh Mutus, Charles Neill, and others. Coherent josephson qubit suitable for scalable quantum integrated circuits. Physical review letters, 111(8):080502, 2013.

[BLQCPLadriere16]

Félix Beaudoin, Dany Lachance-Quirion, W A Coish, and Michel Pioro-Ladrière. Coupling a single electron spin to a microwave resonator: controlling transverse and longitudinal couplings. Nanotechnology, 27(46):464003, 2016.

[BB78]

D Bednarczyk and J Bednarczyk. The approximation of the Fermi–Dirac integral F½(η). Physics Letters A, 64(4):409–410, 1978.

[BSA00]

S. Bednarek, B. Szafran, and J. Adamowski. Solution of the poisson-schrödinger problem for a single-electron transistor. Phys. Rev. B, 61:4461–4464, Feb 2000.

[BP74]

G. L. Bir and G. E. Pikus. Symmetry and Strain-Induced Effects in Semiconductors. Wiley, 1974.

[BS02]

Arthur P Boresi and Richard J Schmidt. Advanced mechanics of materials. John Wiley & Sons, 2002.

[BN18]

Léo Bourdet and Yann-Michel Niquet. All-electrical manipulation of silicon spin qubits with tunable spin-valley mixing. Physical Review B, 97(15):155433, 2018.

[BMOrdejon+02]

Mads Brandbyge, José-Luis Mozos, Pablo Ordejón, Jeremy Taylor, and Kurt Stokbro. Density-functional method for nonequilibrium electron transport. Phys. Rev. B, 65(16):165401, 2002.

[BF04]

Henrik Bruus and Karsten Flensberg. Many-body quantum theory in condensed matter physics: an introduction. OUP Oxford, 2004.

[BLP+23]

Guido Burkard, Thaddeus D. Ladd, Andrew Pan, John M. Nichol, and Jason R. Petta. Semiconductor spin qubits. Rev. Mod. Phys., 95:025003, 2023.

[CC20]

Arrigo Calzolari and Alessandra Catellani. Controlling the TiN electrode work function at the atomistic level: a first principles investigation. IEEE Access, 8:156308–156313, 2020.

[Che92]

David K Cheng. Field and Wave Electromagnetics. Addison-Wesley Publishing Company, Inc., 2nd ed. edition, 1992.

[CSorensenL04]

L. Childress, A. S. Sørensen, and M. D. Lukin. Mesoscopic cavity quantum electrodynamics with quantum dots. Phys. Rev. A, 69(4):042302, 2004.

[CTG+24]

Jesús D Cifuentes, Tuomo Tanttu, Will Gilbert, Jonathan Y Huang, Ensar Vahapoglu, Ross CC Leon, Santiago Serrano, Dennis Otter, Daniel Dunmore, Philip Y Mai, and others. Bounds to electron spin qubit variability for scalable CMOS architectures. Nature communications, 15(1):4299, 2024.

[CL05]

W. A. Coish and Daniel Loss. Singlet-triplet decoherence due to nuclear spins in a double quantum dot. Phys. Rev. B, 72:125337, September 2005.

[DD93]

RG Dandrea and CB Duke. Calculation of the Schottky barrier height at the Al/GaAs (001) heterojunction: Effect of interfacial atomic relaxations. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 11(4):848–853, 1993.

[DDZ92]

RG Dandrea, CB Duke, and Alex Zunger. Interfacial atomic structure and band offsets at semiconductor heterojunctions. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 10(4):1744–1753, 1992.

[Dat97]

Supriyo Datta. Electronic transport in mesoscopic systems. Cambridge University Press, 1997.

[Dat05]

Supriyo Datta. Quantum transport: Atom to transistor. Cambridge University Press, 2005.

[DBK+00]

David P DiVincenzo, Dave Bacon, Julia Kempe, Guido Burkard, and K Birgitta Whaley. Universal quantum computation with the exchange interaction. Nature, 408(6810):339, 2000.

[For93]

Bradley A. Foreman. Effective-mass Hamiltonian and boundary conditions for the valence bands of semiconductor microstructures. Phys. Rev. B, 48:4964–4967, Aug 1993.

[FCTC07]

Mark Friesen, Sucismita Chutia, Charles Tahan, and SN Coppersmith. Valley splitting theory of si ge/ si/ si ge quantum wells. Physical Review B—Condensed Matter and Materials Physics, 75(11):115318, 2007.

[FH79]

Sverre Froyen and Walter A Harrison. Elementary prediction of linear combination of atomic orbitals matrix elements. Physical Review B, 20(6):2420, 1979.

[Fuh03]

Andreas Fuhrer. Phase coherence, orbital and spin states in quantum rings. PhD thesis, ETH Zurich, 2003.

[GuccluSGH02]

A. D. Güçlü, Qing Feng Sun, Hong Guo, and R. Harris. Geometric blockade in a quantum dot: transport properties by exact diagonalization. Phys. Rev. B, 66:195327, Nov 2002.

[GHCJ+16]

John King Gamble, Patrick Harvey-Collard, N Tobias Jacobson, Andrew D Baczewski, Erik Nielsen, Leon Maurer, Inès Montaño, Martin Rudolph, M S Carroll, C H Yang, and others. Valley splitting of single-electron Si MOS quantum dots. Applied Physics Letters, 109(25):253101, 2016.

[GJN+15]

John King Gamble, N. Tobias Jacobson, Erik Nielsen, Andrew D. Baczewski, Jonathan E. Moussa, Inès Montaño, and Richard P. Muller. Multivalley effective mass theory simulation of donors in silicon. Phys. Rev. B, 91:235318, Jun 2015.

[GNM+13]

Xujiao Gao, Erik Nielsen, Richard P Muller, Ralph W Young, Andrew G Salinger, Nathan C Bishop, Michael P Lilly, and Malcolm S Carroll. Quantum computer aided design simulation and optimization of semiconductor quantum dots. Journal of Applied Physics, 114(16):164302, 2013.

[GFW+85]

SM Goodnick, David K Ferry, CW Wilmsen, Z Liliental, D Fathy, and OL Krivanek. Surface roughness at the Si(100)–SiO2 interface. Physical Review B, 32(12):8171, 1985.

[GV95]

M Graf and P Vogl. Electromagnetic fields and dielectric response in empirical tight-binding theory. Physical Review B, 51(8):4940, 1995.

[Gru10]

Marius Grundmann. Physics of semiconductors. Volume 11. Springer, 2010.

[HHC+21]

Wonill Ha, Sieu D Ha, Maxwell D Choi, Yan Tang, Adele E Schmitz, Mark P Levendorf, Kangmu Lee, James M Chappell, Tower S Adams, Daniel R Hulbert, and others. A flexible design platform for Si/SiGe exchange-only qubits with low disorder. Nano Letters, 22(3):1443–1448, 2021.

[HKP+07]

R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen. Spins in few-electron quantum dots. Rev. Mod. Phys., 79:1217–1265, October 2007.

[HTJ+16]

Yu He, Yaohua Tan, Zhengping Jiang, Michael Povolotskyi, Gerhard Klimeck, and Tillmann Kubis. Surface passivation in empirical tight binding. IEEE Transactions on Electron Devices, 63(3):954–958, 2016.

[HL71]

Lars Hedin and Bengt I Lundqvist. Explicit local exchange–correlation potentials. Journal of Physics C: Solid state physics, 4(14):2064, 1971.

[HFJ+17]

T. Hensgens, T. Fujita, L. Janssen, X. Li, C. J. Van Diepen, C. Reichl, W. Wegscheider, S. Das Sarma, and L. M. K. Vandersypen. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array. Nature (London), 548:70–73, 2017.

[HD08]

William J Herrera and Rodolfo A Diaz. The geometrical nature and some properties of the capacitance coefficients based on laplace’s equation. American Journal of Physics, 76(1):55–59, 2008.

[HV56]

C. Herring and E. Vogt. Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering. Phys. Rev., 101(3):944, 1956.

[HWK+14]

Y. H. Huo, B. J. Witek, S. Kumar, J. X. Cardenas, J. X. Zhang, N. Akopian, R. Singh, E. Zallo, R. Grifone, D. Kriegner, R. Trotta, F. Ding, J. Stangl, V. Zwiller, G. Bester, A. Rastelli, and O. G. Schmidt. A light-hole exciton in a quantum dot. Nature Physics, 10(1):46–51, 2014.

[IJLB+24]

Hugo Iteney, Javier Antonio Gonzalez Joa, Christophe Le Bourlot, Thomas W Cornelius, Olivier Thomas, and Jonathan Amodeo. Pyrough: a tool to build 3D samples with rough surfaces for atomistic and finite-element simulations. Computer Physics Communications, 295:108958, 2024.

[Jac99]

J. D. Jackson. Classical Electrodynamics. John Wiley & Sons, 1999.

[JGR81]

C Jagannath, Z W Grabowski, and A K Ramdas. Linewidths of the electronic excitation spectra of donors in silicon. Phys. Rev. B, 23(5):2082, 1981.

[JBF25]

Minjun Jeon, Simon C Benjamin, and Andrew J Fisher. Robustness of electron charge shuttling: architectures, pulses, charge defects, and noise thresholds. Physical Review B, 111(19):195302, 2025.

[JBG+21]

Benjamin Joecker, Andrew D Baczewski, John K Gamble, Jarryd J Pla, André Saraiva, and Andrea Morello. Full configuration interaction simulations of exchange-coupled donors in silicon using multi-valley effective mass theory. New Journal of Physics, 23(7):073007, 2021.

[Kab76]

Wolfgang Kabsch. A solution for the best rotation to relate two sets of vectors. Foundations of Crystallography, 32(5):922–923, 1976.

[KH10]

Eugene Kadantsev and Pawel Hawrylak. Theory of exciton fine structure in semiconductor quantum dots: quantum dot anisotropy and lateral electric field. Phys. Rev. B, 81:045311, 2010.

[Kan20]

Markus Kantner. Electrically Driven Quantum Dot Based Single-photon Sources: Modeling and Simulation. Springer Nature, 2020.

[Kea66]

PN Keating. Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Physical Review, 145(2):637, 1966.

[KSS+14]

Dohun Kim, Zhan Shi, C B Simmons, D R Ward, J R Prance, Teck Seng Koh, John King Gamble, D E Savage, M G Lagally, Mark Friesen, and others. Quantum control and process tomography of a semiconductor quantum dot hybrid qubit. Nature, 511(7507):70–74, 2014.

[KLP+11]

SungGeun Kim, Mathieu Luisier, Abhijeet Paul, Timothy B Boykin, and Gerhard Klimeck. Full three-dimensional quantum transport simulation of atomistic interface roughness in silicon nanowire FETs. IEEE Transactions on Electron Devices, 58(5):1371–1380, 2011.

[KKN+18]

Haruki Kiyama, Alexander Korsch, Naomi Nagai, Yasushi Kanai, Kazuhiko Matsumoto, Kazuhiko Hirakawa, and Akira Oiwa. Single-electron charge sensing in self-assembled quantum dots. Scientific Reports, 8(1):1–6, 2018.

[KBB+00]

Gerhard Klimeck, R Chris Bowen, Timothy B Boykin, Carlos Salazar-Lazaro, Thomas A Cwik, and Adrian Stoica. Si tight-binding parameters from genetic algorithm fitting. Superlattices and Microstructures, 27(2-3):77–88, 2000.

[KGF+12]

Teck Seng Koh, John King Gamble, Mark Friesen, MA Eriksson, and SN Coppersmith. Pulse-gated quantum-dot hybrid qubit. Phys. Rev. Lett., 109(25):250503, 2012.

[LJonssonW+01]

Seungwon Lee, Lars Jönsson, John W Wilkins, Garnett W Bryant, and Gerhard Klimeck. Electron-hole correlations in semiconductor quantum dots with tight-binding wave functions. Physical Review B, 63(19):195318, 2001.

[LOVAK04]

Seungwon Lee, Fabiano Oyafuso, Paul Von Allmen, and Gerhard Klimeck. Boundary conditions for the electronic structure of finite-extent embedded semiconductor nanostructures. Phys. Rev. B, 69(4):045316, 2004.

[Lev02]

Jeremy Levy. Universal quantum computation with spin-1/2 pairs and heisenberg exchange. Phys. Rev. Lett., 89:147902, Sep 2002.

[LD98]

Daniel Loss and David P. DiVincenzo. Quantum computation with quantum dots. Phys. Rev. A, 57:120–126, January 1998.

[LK55]

J. M. Luttinger and W. Kohn. Motion of electrons and holes in perturbed periodic fields. Phys. Rev., 97:869–883, February 1955.

[Lut56]

JM Luttinger. Quantum theory of cyclotron resonance in semiconductors: general theory. Phys. Rev., 102(4):1030, 1956.

[Lowdin50]

Per-Olov Löwdin. On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. The Journal of Chemical Physics, 18(3):365–375, 1950.

[MBT+13a]

J Medford, Johannes Beil, JM Taylor, SD Bartlett, AC Doherty, EI Rashba, DP DiVincenzo, H Lu, AC Gossard, and Charles M Marcus. Self-consistent measurement and state tomography of an exchange-only spin qubit. Nat. Nanotechnol., 8(9):654, 2013.

[MBT+13b]

J. Medford, J. Beil, J. M. Taylor, E. I. Rashba, H. Lu, A. C. Gossard, and C. M. Marcus. Quantum-dot-based resonant exchange qubit. Phys. Rev. Lett., 111:050501, Jul 2013.

[MMD+21]

Zlatko K Minev, Thomas G McConkey, Jeremy Drysdale, Priti Shah, Dennis Wang, Marco Facchini, Grace Harper, John Blair, Helena Zhang, Nick Lanzillo, Sagarika Mukesh, Will Shanks, Chris Warren, and Jay M Gambetta. Qiskit Metal: An Open-Source Framework for Quantum Device Design & Analysis. 2021. URL: https://doi.org/10.5281/zenodo.4618153, doi:10.5281/zenodo.4618153.

[MSM12]

SM Musa, MNO Sadiku, and OD Momoh. Finite element method for calculating capacitance and inductance of symmetrical coupled microstrip lines. In 2012 Proceedings of IEEE Southeastcon, 1–4. IEEE, 2012.

[NTWM25]

Ryo Nagai, Takashi Takemoto, Yusuke Wachi, and Hiroyuki Mizuno. Digital-controlled method of conveyor-belt spin shuttling in silicon for large-scale quantum computation. arXiv preprint arXiv:2502.20955, 2025.

[NC10]

Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum information. Cambridge University Press, 2010.

[NRT+09]

Yann-Michel Niquet, Denis Rideau, C Tavernier, H Jaouen, and Xavier Blase. Onsite matrix elements of the tight-binding Hamiltonian of a strained crystal: Application to silicon, germanium, and their alloys. Phys. Rev. B, 79(24):245201, 2009.

[PWLK+22]

Brian Paquelet Wuetz, Merritt P Losert, Sebastian Koelling, Lucas EA Stehouwer, Anne-Marije J Zwerver, Stephan GJ Philips, Mateusz T Mądzik, Xiao Xue, Guoji Zheng, Mario Lodari, and others. Atomic fluctuations lifting the energy degeneracy in Si/SiGe quantum dots. Nature Communications, 13(1):7730, 2022.

[PS12]

Alexander Pergament and Genrikh Stefanovich. Insulator-to-metal transition in vanadium sesquioxide: does the Mott criterion work in this case? Phase Transitions, 85(3):185–194, 2012.

[PJT+05]

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science, 309(5744):2180–2184, 2005.

[PLBL14]

Giuseppe Pica, Brendon W Lovett, Ravinda N Bhatt, and Stephen A Lyon. Exchange coupling between silicon donors: the crucial role of the central cell and mass anisotropy. Phys. Rev. B, 89(23):235306, 2014.

[PLadriereOT+08]

M. Pioro-Ladrière, T. Obata, Y. Tokura, Y.S. Shin, T. Kubo, K. Yoshida, T. Taniyama, and S. Tarucha. Electrically driven single-electron spin resonance in a slanting Zeeman field. Nat. Phys., 4(10):776–779, 2008.

[Pla08]

Edward Platt. WKB Analysis of Tunnel Coupling in a Simple Model of a Double Quantum Dot. PhD thesis, University of Waterloo, 2008.

[PFP+23]

Raphaël J Prentki, Felix Fehse, Pericles Philippopoulos, Chenyi Zhou, Hong Guo, Marek Korkusinski, and Félix Beaudoin. Robust sub-Kelvin simulations of quantum dot charge sensing. In 2023 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). Kobe, Japan, 2023. IEEE.

[PHLG20]

Raphaël J Prentki, Mohammed Harb, Lei Liu, and Hong Guo. Nanowire transistors with bound-charge engineering. Physical Review Letters, 125(24):247704, 2020.

[PHZ+22]

Raphaël J Prentki, Mohammed Harb, Chenyi Zhou, Pericles Philippopoulos, Félix Beaudoin, Vincent Michaud-Rioux, and Hong Guo. Tunneling leakage in ultrashort-channel MOSFETs—From atomistics to continuum modeling. Solid-State Electronics, 197:108438, 2022.

[PKW+98]

C Pryor, J Kim, LW Wang, AJ Williamson, and A Zunger. Comparison of two methods for describing the strain profiles in quantum dots. Journal of Applied Physics, 83(5):2548–2554, 1998.

[RCP+21]

S.E. Rasmussen, K.S. Christensen, S.P. Pedersen, L.B. Kristensen, T. Bækkegaard, N.J.S. Loft, and N.T. Zinner. Superconducting Circuit Companion—an Introduction with Worked Examples. PRX Quantum, 2(4):040204, December 2021. URL: https://link.aps.org/doi/10.1103/PRXQuantum.2.040204 (visited on 2025-01-27), doi:10.1103/PRXQuantum.2.040204.

[Rei95]

HJ Reittu. Fermi's Golden rule and Bardeen's tunneling theory. American Journal of Physics, 63(10):940–944, 1995.

[RC01]

Edward J Rothwell and Michael J Cloud. Electromagnetics. CRC Press, 2001.

[RB15]

Maximilian Russ and Guido Burkard. Asymmetric resonant exchange qubit under the influence of electrical noise. Phys. Rev. B, 91:235411, Jun 2015.

[SBCalderonK15]

A L Saraiva, A Baena, M J Calderón, and Belita Koiller. Theory of one and two donors in silicon. Journal of Physics: Condensed Matter, 27(15):154208, 2015.

[SCalderonC+11]

A. L. Saraiva, M. J. Calderón, Rodrigo B. Capaz, Xuedong Hu, S. Das Sarma, and Belita Koiller. Intervalley coupling for interface-bound electrons in silicon: An effective mass study. Phys. Rev. B, 84:155320, Oct 2011.

[SCalderonH+09]

A. L. Saraiva, M. J. Calderón, Xuedong Hu, Sankar Das Sarma, and Belita Koiller. Physical mechanisms of interface-mediated intervalley coupling in si. Physical Review B—Condensed Matter and Materials Physics, 80(8):081305, 2009.

[SSW+14]

Zhan Shi, C B Simmons, Daniel R Ward, J R Prance, Xian Wu, Teck Seng Koh, John King Gamble, D E Savage, M G Lagally, Mark Friesen, and others. Fast coherent manipulation of three-electron states in a double quantum dot. Nature communications, 5(1):3020, 2014.

[SSP+12]

Zhan Shi, C. B. Simmons, J. R. Prance, John King Gamble, Teck Seng Koh, Yun-Pil Shim, Xuedong Hu, D. E. Savage, M. G. Lagally, M. A. Eriksson, Mark Friesen, and S. N. Coppersmith. Fast hybrid silicon double-quantum-dot qubit. Phys. Rev. Lett., 108:140503, Apr 2012.

[ST16]

Yun-Pil Shim and Charles Tahan. Charge-noise-insensitive gate operations for always-on, exchange-only qubits. Phys. Rev. B, 93:121410, Mar 2016.

[SN76]

Koichi Shindo and Hisashi Nara. The effective mass equation for the multi-valley semiconductors. Journal of the Physical Society of Japan, 40(6):1640–1644, 1976.

[SK54]

John C Slater and George F Koster. Simplified LCAO method for the periodic potential problem. Physical Review, 94(6):1498, 1954.

[STN07]

Y. Sun, S. E. Thompson, and T. Nishida. Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors. Journal of Applied Physics, 101(10):104503, 2007.

[SN81]

Simon M Sze and Kwok K Ng. Physics of semiconductor devices. John Wiley & Sons, 1981.

[SBPP13]

P. Szumniak, S. Bednarek, J. Pawłowski, and B. Partoens. All-electrical control of quantum gates for single heavy-hole spin qubits. Phys. Rev. B, 87:195307, May 2013.

[TMW+21]

L. A. Terrazos, E. Marcellina, Zhanning Wang, S. N. Coppersmith, Mark Friesen, A. R. Hamilton, Xuedong Hu, Belita Koiller, A. L. Saraiva, Dimitrie Culcer, and Rodrigo B. Capaz. Theory of hole-spin qubits in strained germanium quantum dots. Phys. Rev. B, 103:125201, Mar 2021.

[TEK24]

Abel Thayil, Lasse Ermoneit, and Markus Kantner. Theory of valley splitting in si/sige spin-qubits: interplay of strain, resonances and random alloy disorder. arXiv preprint arXiv:2412.20618, 2024.

[TvdWOT06]

Yasuhiro Tokura, Wilfred G van der Wiel, Toshiaki Obata, and Seigo Tarucha. Coherent single electron spin control in a slanting zeeman field. Phys. Rev. Lett., 96(4):047202, 2006.

[TR04]

A Trellakis and Umberto Ravaioli. Directional effects on bound quantum states for trench oxide quantum wires on (1 0 0)-silicon. Solid-State Electronics, 48(3):367–371, 2004.

[VHD83]

P Vogl, Harold P Hjalmarson, and John D Dow. A semi-empirical tight-binding theory of the electronic structure of semiconductors. Journal of Physics and Chemistry of Solids, 44(5):365–378, 1983.

[WM08]

Daniel F Walls and Gerard J Milburn. Quantum optics. Springer-Verlag Berlin Heidelberg, 2008.

[Win03]

Roland Winkler. Spin–orbit coupling effects in two-dimensional electron and hole systems. Number 191. Springer Science & Business Media, 2003.