11. Including strain in a simulation
11.1. Requirements
11.1.1. Software components
QTCAD
Gmsh
11.1.2. Geometry file
qtcad/examples/tutorials/meshes/box_order2.geo
11.1.3. Python script
qtcad/examples/tutorials/holes_strain.py
11.1.4. References
11.2. Briefing
In this tutorial, we explain how to include strain in a QTCAD simulation. We will investigate how strain can modify the character of holes confined to a box-like quantum dot. While holes confined to quantum dots are typically found to possess predominantly heavy-hole character, biaxial tensile strain has been shown to lead to ground states with predominantly light-hole character [HWK+14].
The full code may be found at the bottom of this page,
or in qtcad/examples/tutorials/holes_strain.py
.
11.3. Setting up the device
11.3.1. Header
Like most Python scripts, we start with a header. The header is used to import the relevant modules that will be used in this example.
import numpy as np
from matplotlib import pyplot as plt
import pathlib
from progress.bar import ChargingBar as Bar
from qtcad.device import materials as mt
from qtcad.device import constants as ct
from qtcad.device.mesh3d import Mesh
from qtcad.device import Device
from qtcad.device.schrodinger import Solver, SolverParams
The first group of imports are from standard python libraries.
The second group contains constants and material properties.
The third group of imports contains modules that allow us to create the
mesh
, the
device
,
and solve the Schrödinger
equation.
11.3.2. Setup
After importing the relevant modules, we set up our calculation.
This step involves defining constants and creating the
mesh
and the
device
over which the simulation will be
run.
#-------------------------------------------------------------------------------
# Setup
#-------------------------------------------------------------------------------
# Constants --------------------------------------------------------------------
nm = 1e-9
meV = ct.e/1000
Here we define two constants: nm
and meV
which, respectively, define
the nanometer and the millielectronvolts in SI units.
Next, we set up paths to input and output files.
# Names of files ---------------------------------------------------------------
path = pathlib.Path(__file__).parent.resolve()
# Output
n_bw = "holes_strain_bw"
n_energy = "holes_strain_energies"
n_plot = "holes_strain"
# Input
n_mesh = "box_order2.msh"
The first line defines the path to the script being run.
We then define the names of certain output data files and the name of the mesh
file that we will load.
After the preliminary constants have been defined, we create a
Mesh
object.
# Initialize the meshes --------------------------------------------------------
path_mesh = str(path/"meshes"/f"{n_mesh}")
# Load the mesh
scaling = nm
mesh = Mesh(scaling, path_mesh)
In this specific example, we are using a second-order mesh (as specified in the
corresponding .geo file, ‘box_order2.geo’), from which we then create a
Device
object.
# Create device ------------------------------------------------------------
# Create device from mesh
d = Device(mesh, conf_carriers="h", hole_kp_model = "luttinger_kohn_foreman")
# Create regions
d.new_region("domain", mt.GaAs)
# Then create insulator boundaries
d.new_insulator("bnd")
The system we have created is a box made of GaAs with dimensions
\(60~\mathrm{nm} \times 60~\mathrm{nm} \times 12~\mathrm{nm}\).
The device, d
, is defined over this box and contains holes as confined
carriers, which we model using the 4-band "luttinger_kohn_foreman"
model.
We have also enforced “insulator” boundary conditions at the faces of the box,
which will indicate to the Schrödinger
Solver
that the
wavefunctions should vanish at the boundaries of the box.
11.4. Solving the Schrödinger equation with strain
Now that the Device
, d
, has been
initialized, we can solve the Schrödinger equation.
We start by setting up the
SolverParams
.
#-------------------------------------------------------------------------------
# Solving Schrodinger Equation under biaxial tensile strain
#-------------------------------------------------------------------------------
# Set up solver parameters -----------------------------------------------------
params = SolverParams()
params.num_states = 10
params.verbose = False
Then, we add biaxial tensile strain to the system.
The strain tensor has components \(\varepsilon_{xx} > 0\) and
\(\varepsilon_{yy} > 0\) with all other components vanishing.
We will solve the Schrödinger equation for different magnitudes of the strain
\(\varepsilon_{xx}=\varepsilon_{yy}\).
The different magnitudes are stored in the array R
.
# Set up strain ----------------------------------------------------------------
# Biaxial tensile strain
R = np.linspace(0, 0.007, 5)
strain = np.array([
[1, 0, 0],
[0, 1, 0],
[0, 0, 0]
])
# use a progress bar
progress_bar = Bar("Strain loop", max = len(R))
In the above snippet we have also set up a progress bar, Bar
, to track the
calculation.
We loop over the different values of strain.
For each generated strain tensor, we use the
set_strain
method to set the
tensor over the Device
, d
.
This method takes as input a 2D numpy
array representing the homogenous strain
affecting the entire device.
In this case, this array is given by r * strain
.
nrg = []
bw = []
for r in R:
# Set strain
d.set_strain(r * strain)
# Solve --------------------------------------------------------------------
# Create Schrodinger solver
s = Solver(d, solver_params=params)
s.solve()
# Print results
print('------------------------')
print(f'e_xx = e_yy = {r}')
d.print_energies()
progress_bar.next() # Update progress bar
print('\n------------------------')
# Store energies
nrg.append(d.energies)
# Store band weights
bw.append(d.band_weight())
# Finish progress bar
progress_bar.finish()
# Save data --------------------------------------------------------------------
# Energy
nrg = np.array(nrg)
E = np.zeros((nrg.shape[0], nrg.shape[1]+1))
E[:, 0] = R
E[:, 1:] = nrg
np.savetxt(str(path/"data"/f"{n_energy}.txt"), E)
# Band weights
bw = np.array(bw)
BW = np.zeros((bw.shape[0], bw.shape[1], 2))
BW[..., 0] = bw[..., 0] + bw[..., 1] # Heavy hole weight
BW[..., 1] = bw[..., 2] + bw[..., 3] # Light hole weight
np.savetxt(str(path/"data"/f"{n_bw}.txt"), BW[:, 0, :])
After setting the strain, we create a Schrödinger
Solver
and
solve
the Schrödinger equation.
We then append the energies to the nrg
list.
We also use the band_weight
method to compute the contribution from each band (2 heavy-hole and 2
light-hole bands) to each eigenstate and append the output to the bw
list.
Specifically, the band_weight
method outputs a 2D numpy
array.
The entries in this array are \(\left|\left<3/2, \nu| j\right>\right|^2\),
where \(\left| j\right>\) is the \(j^{\mathrm{th}}\) eigenstate of the
system and \(\left|3/2, \nu\right>\) is a state at the valence-band
extremum (in our case \(\nu\) runs over the ordered set
\(\{+3/2, -3/2, +1/2, -1/2\}\), i.e., the heavy-hole and light-hole states
respectively).
The first index of the array runs over the different eigenstates (labelled by
\(j\) above) and the second runs over the different valence bands
of the "luttinger_kohn_foreman"
model we are considering (labelled by
\(\nu\) above).
The goal of this loop is to compute the band weights as a function of the
magnitude of the applied biaxial tensile strain.
We expect a transition from predominantly heavy-hole-like ground
state to predominantly light-hole-like ground state to occur for some value of
strain \(\varepsilon_{xx}=\varepsilon_{yy}\) between \(0\) and \(0.007\).
After the loop is complete, the energies for different values of strain are
saved to "data/holes_strain_energies.txt"
and the heavy-hole and light-hole
weights are saved to "data/holes_strain_bw.txt"
.
Note
There are 2 heavy-hole bands and 2 light-hole bands.
The band_weight
method
therefore computes four weights for each eigenstate.
However, because we are only interested in the relative weights of heavy
and light holes, we store the total heavy-hole (sum over the 2 separate
heavy-hole weights) and total light-hole (sum over the 2 separate
light-hole weights) contributions in BW
.
Note
The set_strain
method can
also be used to analyze the effects of inhomogeneous strain.
In the current example, the focus is on homogeneous strain and therefore we
pass a single numpy
array to the
set_strain
method.
Alternatively, we could pass a function of three variables, each representing a
spatial dimension (x
, y
, and z
) which outputs a 2D,
\(3\times 3\) numpy array.
This function can be used to define the strain at every position in space.
11.5. Visualizing results
Finally, we visualize the results. We plot the eigenenergies of the system as a function of the applied strain as well as the heavy-hole and light-hole weights associated with the ground state as a function of the applied strain.
#-------------------------------------------------------------------------------
# Plotting
#-------------------------------------------------------------------------------
# Create plot
fig = plt.figure()
# Plot energies
ax1 = fig.add_subplot(2, 1, 1)
ax1.plot(E[:, 0], E[:, 1:]/meV)
ax1.set_xlabel(
r'biaxial strain, $\varepsilon_{xx} = \varepsilon_{yy}$', fontsize=14
)
ax1.set_ylabel(r'$E$ ($meV$)', fontsize=14)
# Plot band weights
ax2 = fig.add_subplot(2, 1, 2)
ax2.plot(E[:, 0], BW[:, 0, 0], label="HH weight")
ax2.plot(E[:, 0], BW[:, 0, 1], label="LH weight")
ax2.set_xlabel(
r'biaxial strain, $\varepsilon_{xx} = \varepsilon_{yy}$', fontsize=14
)
ax2.set_ylabel(r'ground-state weights', fontsize=14)
ax2.legend()
# Save plot
plt.tight_layout()
plt.savefig(str(path / "output" / f"{n_plot}.png"))
The plots are saved in "output/holes_strain.png"
We see that at roughly \(\varepsilon_{xx}=\varepsilon_{yy} \simeq 0.003\) there is a transition between a predominantly heavy-hole ground state (blue line) to a predominantly light-hole ground state (orange line). This transition is consistent with the Fig. 4 of [HWK+14].
Note
The results presented here could vary depending on the characteristic length of the mesh used. To perform a proper comparison, the calculations should be converged as a function of the characteristic length of the mesh. Nevertheless, the mesh used in this example can give us an idea of where to expect the heavy-hole-to-light-hole transition.
11.6. Full code
__copyright__ = "Copyright 2022-2024, Nanoacademic Technologies Inc."
import numpy as np
from matplotlib import pyplot as plt
import pathlib
from progress.bar import ChargingBar as Bar
from qtcad.device import materials as mt
from qtcad.device import constants as ct
from qtcad.device.mesh3d import Mesh
from qtcad.device import Device
from qtcad.device.schrodinger import Solver, SolverParams
#-------------------------------------------------------------------------------
# Setup
#-------------------------------------------------------------------------------
# Constants --------------------------------------------------------------------
nm = 1e-9
meV = ct.e/1000
# Names of files ---------------------------------------------------------------
path = pathlib.Path(__file__).parent.resolve()
# Output
n_bw = "holes_strain_bw"
n_energy = "holes_strain_energies"
n_plot = "holes_strain"
# Input
n_mesh = "box_order2.msh"
# Initialize the meshes --------------------------------------------------------
path_mesh = str(path/"meshes"/f"{n_mesh}")
# Load the mesh
scaling = nm
mesh = Mesh(scaling, path_mesh)
# Create device ------------------------------------------------------------
# Create device from mesh
d = Device(mesh, conf_carriers="h", hole_kp_model = "luttinger_kohn_foreman")
# Create regions
d.new_region("domain", mt.GaAs)
# Then create insulator boundaries
d.new_insulator("bnd")
#-------------------------------------------------------------------------------
# Solving Schrodinger Equation under biaxial tensile strain
#-------------------------------------------------------------------------------
# Set up solver parameters -----------------------------------------------------
params = SolverParams()
params.num_states = 10
params.verbose = False
# Set up strain ----------------------------------------------------------------
# Biaxial tensile strain
R = np.linspace(0, 0.007, 5)
strain = np.array([
[1, 0, 0],
[0, 1, 0],
[0, 0, 0]
])
# use a progress bar
progress_bar = Bar("Strain loop", max = len(R))
nrg = []
bw = []
for r in R:
# Set strain
d.set_strain(r * strain)
# Solve --------------------------------------------------------------------
# Create Schrodinger solver
s = Solver(d, solver_params=params)
s.solve()
# Print results
print('------------------------')
print(f'e_xx = e_yy = {r}')
d.print_energies()
progress_bar.next() # Update progress bar
print('\n------------------------')
# Store energies
nrg.append(d.energies)
# Store band weights
bw.append(d.band_weight())
# Finish progress bar
progress_bar.finish()
# Save data --------------------------------------------------------------------
# Energy
nrg = np.array(nrg)
E = np.zeros((nrg.shape[0], nrg.shape[1]+1))
E[:, 0] = R
E[:, 1:] = nrg
np.savetxt(str(path/"data"/f"{n_energy}.txt"), E)
# Band weights
bw = np.array(bw)
BW = np.zeros((bw.shape[0], bw.shape[1], 2))
BW[..., 0] = bw[..., 0] + bw[..., 1] # Heavy hole weight
BW[..., 1] = bw[..., 2] + bw[..., 3] # Light hole weight
np.savetxt(str(path/"data"/f"{n_bw}.txt"), BW[:, 0, :])
#-------------------------------------------------------------------------------
# Plotting
#-------------------------------------------------------------------------------
# Create plot
fig = plt.figure()
# Plot energies
ax1 = fig.add_subplot(2, 1, 1)
ax1.plot(E[:, 0], E[:, 1:]/meV)
ax1.set_xlabel(
r'biaxial strain, $\varepsilon_{xx} = \varepsilon_{yy}$', fontsize=14
)
ax1.set_ylabel(r'$E$ ($meV$)', fontsize=14)
# Plot band weights
ax2 = fig.add_subplot(2, 1, 2)
ax2.plot(E[:, 0], BW[:, 0, 0], label="HH weight")
ax2.plot(E[:, 0], BW[:, 0, 1], label="LH weight")
ax2.set_xlabel(
r'biaxial strain, $\varepsilon_{xx} = \varepsilon_{yy}$', fontsize=14
)
ax2.set_ylabel(r'ground-state weights', fontsize=14)
ax2.legend()
# Save plot
plt.tight_layout()
plt.savefig(str(path / "output" / f"{n_plot}.png"))