16. Potential calculation
In this section, we introduce details of potential calculations. Recall the Kohn-Sham equation
where
It is often useful to inspect and plot various contributions to the potential.
First, we need a converged self-consistent
calculation.
Suppose we are interested in AlP
info.savepath = './results/alp_lcao_scf'
info.calculationType = 'self-consistent'
atom.element = [1 2]
atom.fracxyz = [0 0 0
0.25 0.25 0.25]
domain.latvec = 5.4510*...
[0.0 0.5 0.5
0.5 0.0 0.5
0.5 0.5 0.0];
domain.lowres = 0.3
units.latvec = 'A'
element(1).species = 'Al'
element(2).species = 'P'
kpoint.gridn = [4,4,4]
Then, we set up a potential calculation as follows
info.savepath = './results/alp_lcao_pot'
info.calculationType = 'potential'
rho.in = './results/alp_lcao_scf'
Let’s inspect the results
>> h5disp('results/alp_lcao_pot.h5','/potential')
HDF5 alp_lcao_pot.h5
Group '/potential'
Dataset 'vdh'
Size: 15625x1
MaxSize: 15625x1
Datatype: H5T_IEEE_F64LE (double)
ChunkSize: []
Filters: none
FillValue: 0.000000
Attributes:
'real': 1.000000
Dataset 'vna'
Size: 15625x1
MaxSize: 15625x1
Datatype: H5T_IEEE_F64LE (double)
ChunkSize: []
Filters: none
FillValue: 0.000000
Attributes:
'real': 1.000000
Dataset 'vxc'
Size: 15625x2
MaxSize: 15625x2
Datatype: H5T_IEEE_F64LE (double)
ChunkSize: []
Filters: none
FillValue: 0.000000
Attributes:
'real': 1.000000
By default, there three potentials are saved: vdh
, vna
and vxc
.
To control which potential is calculated and saved, set option.savePotential
to a list of strings specifying which potentials to compute and save.
For example,
info.savepath = './results/alp_lcao_pot'
info.calculationType = 'potential'
rho.in = './results/alp_lcao_scf'
option.savePotential = {'vh','vps'}
The available options are the following.
vatom
: neutral atom charge electrostatic potential.\[-\nabla^2 v_{atom}(\mathbf{r}) = 4\pi\rho_{NA}(\mathbf{r})\]vdh
: \(\delta\)-Hartree potential.\[-\nabla^2 v_{\delta H}(\mathbf{r}) = 4\pi(\rho(\mathbf{r}) - \rho_{NA}(\mathbf{r}))\]veff
: effective potential.\[\begin{split}v_{\text{eff}} = v_{\text{NA}}(\mathbf{r}) + v_{\delta H}(\mathbf{r}) + v_{xc}(\mathbf{r})\\ v_{\text{eff}} = v_{\text{PS}}(\mathbf{r}) + v_{H}(\mathbf{r}) + v_{xc}(\mathbf{r})\end{split}\]vh
: Hartree potential.\[-\nabla^2 v_{H}(\mathbf{r}) = 4\pi\rho(\mathbf{r})\]vna
: neutral atom potential.\[v_{\text{NA}} = v_{\text{PS}}(\mathbf{r}) + v_{\text{atom}}(\mathbf{r})\]vps
: pseudo-ion potential.\[v_{\text{PS}} = \sum\limits_{\mathbf{T}I} v_{loc,I}(\mathbf{r}-\mathbf{R}_I-\mathbf{T})\]vxc
: exchange-correlation potential.\[v_{xc}^\sigma = \frac{\delta E_{xc}[\rho^\uparrow,\rho^\downarrow]}{\delta\rho^\sigma}\]