# -*- coding: utf-8 -*-
"""This module defines the ``Kpoint`` class."""
import numpy as np
from nanotools.cell import bra2avec
from nanotools.utils import is_row_vector
[docs]
def defaultSymmetryKPoints(crystalStructure, avecStd):
    """Returns a linear BZ sampling given the crystal structure and lattice vectors.
    Args:
        crystalStructure (string):
            Name of the Bravais lattice.
        avecStd (2D array):
            (3 x 3) array of row-vectors corresponding to the lattice vectors in the standard
            ordering (AFLOW).
    Returns:
        symmetryKPoints (list of strings):
            Path of high-symmetry k-point labels.
    Remarks:
        Lei Liu, HZWTech
        2015-10
        Vincent Michaud-Rioux
        2020-06-23
    """
    avecStd = avecStd.transpose()  # here primitiveCellVectors = [a1 a2 a3]
    epsilon = 1e-3
    if crystalStructure.lower() in ["cubic", "cub", "simplecubic", "sc", "cp"]:
        # 1: ucv = pcv = [[1 0 0]', [0 1 0]', [0 0 1]']
        # symmetryKPoints = [["G","X","M","G","R","X"],["M","R"]]
        symmetryKPoints = [["G", "X", "M", "G", "R", "X"], ["M", "R"]]
        # ["G", "X", "M", "G", "R", "X"] ["M", "R"]
    elif crystalStructure.lower() in ["facecenteredcubic", "fcc", "cf"]:
        # 2: pcv = [[0 1./2. 1./2.]', [1./2., 0, 1./2.]', [1./2. 1./2. 0]']
        #    ucv = [[1 0 0]', [0 1 0]', [0 0 1]']
        # symmetryKPoints = ["U","X","G","X","W","K","G","L","U","W","L","K"]
        symmetryKPoints = [
            ["G", "X", "W", "K", "G", "L", "U", "W", "L", "K"],
            ["U", "X"],
        ]
        # ["G","X","W","K","G","L","U","W","L","K"] ["U","X"]
    elif crystalStructure.lower() in ["bodycenteredcubic", "bcc", "ci"]:
        # 3: pcv = [[-1./2. 1./2. 1./2.]', [1./2., -1./2., 1./2.]', [1./2. 1./2. -1./2.]']
        #    ucv = [[1 0 0]', [0 1 0]', [0 0 1]']
        # symmetryKPoints = [["G","H","N","G","P","H"] ["P","N"]]
        symmetryKPoints = [["G", "H", "N", "G", "P", "H"], ["P", "N"]]
        # ["G","H","N","G","P","H"] ["P","N"]
    elif crystalStructure.lower() in ["tetragonal", "tet", "tp"]:
        # 4: ucv = pcv = [[1 0 0]', [0 1 0]', [0 0 5]']
        # symmetryKPoints = [["G", "X", "M", "G", "Z", "R", "A", "Z"] ["X", "R", "G", "A", "M"]]
        symmetryKPoints = [
            ["G", "X", "M", "G", "Z", "R", "A", "Z"],
            ["X", "R"],
            ["M", "A"],
        ]
        # ["G", "X", "M", "G", "Z", "R", "A", "Z"] ["X", "R"]  ["M", "A"]
    elif crystalStructure.lower() in ["bodycenteredtetragonal", "bct", "ti"]:
        # 5: pcv = [[-1./2. 1./2. 5/2]', [1./2., -1./2., 5/2]', [1./2. 1./2. -5/2]']
        #    ucv = [[1 0 0]', [0 1 0]', [0 0 5]']
        pcv4bcc = np.array(
            [
                [-1.0 / 2.0, 1.0 / 2.0, 1.0 / 2.0],
                [1.0 / 2.0, -1.0 / 2.0, 1.0 / 2.0],
                [1.0 / 2.0, 1.0 / 2.0, -1.0 / 2.0],
            ]
        ).transpose()
        ucv4bcc = np.eye(3)
        pcv = avecStd
        ucv = np.matmul(pcv, np.linalg.solve(pcv4bcc, ucv4bcc))
        if np.linalg.norm(ucv[:, 2]) < np.linalg.norm(ucv[:, 0]):
            type = "1"
        else:
            type = "2"
        if type == "1":
            # symmetryKPoints = ["X", "P", "G", "X", "M", "G", "Z", "P", "N", "Z1", "M"]
            symmetryKPoints = [
                ["G", "X", "M", "G", "Z", "P", "N", "Z1", "M"],
                ["X", "P"],
            ]
            # ["G", "X", "M", "G", "Z", "P", "N", "Z1", "M"] ["X", "P"]
        elif type == "2":
            # symmetryKPoints = ["X", "P", "G", "X", "Y", "S", "G", "Z", "S1", "N", "P", "Y1", "Z"]
            symmetryKPoints = [
                ["G", "X", "Y", "S", "G", "Z", "S1", "N", "P", "Y1", "Z"],
                ["X", "P"],
            ]
            # ["G", "X", "Y", "S", "G", "Z", "S1", "N", "P", "Y1", "Z"], ["X", "P"]
    elif crystalStructure.lower() in ["orthorhombic", "orc", "op"]:
        # 6: ucv = pcv = [[1 0 0]', [0 2 0]', [0 0 3]']
        # symmetryKPoints = ["G","X","U","R","X","S","R","T","S","Y","T","Z","Y","G","Z","U","G"]
        symmetryKPoints = [
            ["G", "X", "S", "Y", "G", "Z", "U", "R", "T", "Z"],
            ["Y", "T"],
            ["U", "X"],
            ["S", "R"],
        ]
        # ["G", "X", "S", "Y", "G", "Z", "U", "R", "T", "Z"], ["Y", "T"], ["U", "X"], ["S", "R"]
    elif crystalStructure.lower() in ["facecenteredorthorhombic", "orcf", "of"]:
        # 7: pcv = [[0 2/2 3/2]', [1./2., 0, 3/2]', [1./2. 2/2 0]']
        #    ucv = [[1 0 0]', [0 2 0]', [0 0 3]']
        pcv4fcc = np.array(
            [
                [0, 1.0 / 2.0, 1.0 / 2.0],
                [1.0 / 2.0, 0, 1.0 / 2.0],
                [1.0 / 2.0, 1.0 / 2.0, 0],
            ]
        ).transpose()
        ucv4fcc = np.eye(3)
        pcv = avecStd
        ucv = np.matmul(pcv, np.linalg.solve(pcv4fcc, ucv4fcc))
        a = np.linalg.norm(ucv[:, 0])
        b = np.linalg.norm(ucv[:, 1])
        c = np.linalg.norm(ucv[:, 2])
        d = (1.0 / b**2 + 1.0 / c**2 - 1.0 / a**2) * max([a**2, b**2, c**2])
        if d < -epsilon:
            type = "1"
        elif d > epsilon:
            type = "2"
        else:
            type = "3"
        if type == "1":
            # symmetryKPoints = [["G", "Y", "T", "Z", "G", "X", "A1", "Y"], ["T", "X1", "G", "L"], ["X", "A", "Z"]]
            symmetryKPoints = [
                ["G", "Y", "T", "Z", "G", "X", "A1", "Y"],
                ["T", "X1"],
                ["X", "A", "Z"],
                ["L", "G"],
            ]
            # ["G", "Y", "T", "Z", "G", "X", "A1", "Y"], ["T", "X1"], ["X", "A", "Z"], ["L", "G"]
        elif type == "2":
            # symmetryKPoints = [["G", "Y", "C", "D", "X", "G", "Z", "D1", "H", "C"], ["X", "H1", "G", "C1", "Z"], ["L", "G", "H", "Y"]]
            symmetryKPoints = [
                ["G", "Y", "C", "D", "X", "G", "Z", "D1", "H", "C"],
                ["C1", "Z"],
                ["X", "H1"],
                ["H", "Y"],
                ["L", "G"],
            ]
            # ["G", "Y", "C", "D", "X", "G", "Z", "D1", "H", "C"], ["C1", "Z"], ["X", "H1"], ["H", "Y"], ["L", "G"]
        elif type == "3":
            # symmetryKPoints = [["L", "G", "Y", "T", "Z", "G", "X", "A1", "Y"], ["X", "A", "Z"]]
            symmetryKPoints = [
                ["G", "Y", "T", "Z", "G", "X", "A1", "Y"],
                ["X", "A", "Z"],
                ["L", "G"],
            ]
            # ["G", "Y", "T", "Z", "G", "X", "A1", "Y"], ["X", "A", "Z"], ["L", "G"]
    elif crystalStructure.lower() in ["bodycenteredorthorhombic", "orci", "oi"]:
        # 8: pcv = [[-1./2. 2/2 3/2]', [1./2., -2/2, 3/2]', [1./2. 2/2 -3/2]']
        #    ucv = [[1 0 0]', [0 2 0]', [0 0 3]']
        # symmetryKPoints = [["G", "X", "L", "T", "W", "R", "X1", "Z", "G", "Y", "S", "W"], ["Y", "L1", "G", "Y1", "Z"]]
        symmetryKPoints = [
            ["G", "X", "L", "T", "W", "R", "X1", "Z", "G", "Y", "S", "W"],
            ["L1", "Y"],
            ["Y1", "Z"],
        ]
        # ["G", "X", "L", "T", "W", "R", "X1", "Z", "G", "Y", "S", "W"], ["L1", "Y"], ["Y1", "Z"]
    elif crystalStructure.lower() in ["ccenteredorthorhombic", "orcc", "os"]:
        # 9: pcv = [[1./2. -2/2 0]', [1./2., 2/2, 0]', [0 0 3]']
        #    ucv = [[1 0 0]', [0 2 0]', [0 0 3]']
        # symmetryKPoints = ["Z","T","G","X","S","R","A","Z","G","Y","X1","A1","T","Y"]
        symmetryKPoints = [
            ["G", "X", "S", "R", "A", "Z", "G", "Y", "X1", "A1", "T", "Y"],
            ["Z", "T"],
        ]
        # ["G", "X", "S", "R", "A", "Z", "G", "Y", "X1", "A1", "T", "Y"], ["Z", "T"]
    elif crystalStructure.lower() in ["hexagonal", "hex", "hcp", "hp"]:
        # 10: ucv = pcv = [[1./2. -sqrt(3)/2 0]', [1./2., sqrt(3)/2, 0]', [0 0 3]']
        # symmetryKPoints = [["G", "M", "K", "G", "A", "L", "H", "A"], ["M", "L", "G", "K", "H"]]
        symmetryKPoints = [
            ["G", "M", "K", "G", "A", "L", "H", "A"],
            ["L", "M"],
            ["K", "H"],
        ]
        # ["G", "M", "K", "G", "A", "L", "H", "A"], ["L", "M"], ["K", "H"]
    elif crystalStructure.lower() in ["rhombohedral", "rhl", "hr"]:
        # 11: ucv = pcv = [[cos(pi/5) -sin(pi/5) 0]', [cos(pi/5) sin(pi/5), 0]',
        #      [cos(2*pi/5)/cos(pi/5), 0, sqrt(1-(cos(2*pi/5)/cos(pi/5))**2)]']
        if np.dot(avecStd[:, 2], avecStd[:, 0]) > 0:
            type = "1"
        else:
            type = "2"
        if type == "1":
            # symmetryKPoints = [["L","P","G","L","B1","G","B","Z","G","X"],["Q","F","P1","Z"]]
            symmetryKPoints = [
                ["G", "L", "B1"],
                ["B", "Z", "G", "X"],
                ["Q", "F", "P1", "Z"],
                ["L", "P"],
            ]
            # ["G", "L", "B1"], ["B", "Z", "G", "X"], ["Q", "F", "P1", "Z"], ["L", "P"]
        elif type == "2":
            # symmetryKPoints = ["G", "P", "Z", "Q", "G", "F", "P1", "Q1", "L", "Z"]
            symmetryKPoints = [["G", "P", "Z", "Q", "G", "F", "P1", "Q1", "L", "Z"]]
            # ["G", "P", "Z", "Q", "G", "F", "P1", "Q1", "L", "Z"]
    elif crystalStructure.lower() in ["monoclinic", "mcl", "mp"]:
        # 12: ucv = pcv = [[1 0 0]', [0 2 0]', [0, 3*cos(pi/5), 3*sin(pi/5)]']
        # symmetryKPoints = ["Y","D","G","Y","H","G","E","M1","A","X","H1","G","M","D","Z"]
        symmetryKPoints = [
            ["G", "Y", "H", "C", "E", "M1", "A", "X", "G", "Z", "D", "M"],
            ["Z", "A"],
            ["D", "Y"],
            ["X", "H1"],
        ]
        # ["G", "Y", "H", "G", "E", "M1", "A", "X", "H1"], ["M", "D", "Z"], ["Y", "D"]
    elif crystalStructure.lower() in ["ccenteredmonoclinic", "mclc", "ms"]:
        # 13: pcv = [[1./2. 2/2 0]', [-1./2. 2/2 0]', [0, 3*cos(pi/5), 3*sin(pi/5)]']
        #     ucv = [[1 0 0]', [0 2 0]', [0, 3*cos(pi/5), 3*sin(pi/5)]']
        pcv = avecStd
        a = np.linalg.norm(pcv[:, 0] - pcv[:, 1])
        b = np.linalg.norm(pcv[:, 0] + pcv[:, 1])
        c = np.linalg.norm(pcv[:, 2])
        kpcv = np.linalg.inv(pcv).transpose()
        kgamma = (
            np.dot(kpcv[:, 0], kpcv[:, 1])
            / np.linalg.norm(kpcv[:, 0])
            / np.linalg.norm(kpcv[:, 1])
        )
        if kgamma < -epsilon:
            type = "1"
        elif abs(kgamma) < epsilon:
            type = "2"
        else:
            cosalpha = np.dot(pcv[:, 0] + pcv[:, 1], pcv[:, 2]) / b / c
            sin2alpha = 1.0 - cosalpha**2
            d = b * cosalpha / c + (b**2 * sin2alpha / a**2) - 1.0
            if d < -epsilon:
                type = "3"
            elif abs(d) < epsilon:
                type = "4"
            else:
                type = "5"
        if type == "1":
            # symmetryKPoints = [["M","G","Y","F","L","I","G","I1","Z","F1","G","X1","Y"],["X", "G", "N"]]
            symmetryKPoints = [
                ["G", "Y", "F", "L", "I"],
                ["I1", "Z", "G", "X"],
                ["X1", "Y"],
                ["M", "G", "N"],
                ["Z", "F1"],
            ]
            # ["G","Y", "F", "L", "I"], ["I1", "Z", "F1"], ["Y", "X1"], ["X", "G", "N"], ["M", "G"]
        elif type == "2":
            # symmetryKPoints = ["N","G","Y","F","L","I","G","I1","Z","F1","G","M"]
            symmetryKPoints = [
                ["G", "Y", "F", "L", "I"],
                ["I1", "Z", "F1"],
                ["N", "G", "M"],
            ]
            # ["G", "Y", "F", "L", "I"], ["I1", "Z", "F1"], ["N", "G", "M"]
        elif type == "3":
            # symmetryKPoints = ["M","G","Y","F","H","Z","I","F1","G","H1","Y1","X","G","N"]
            symmetryKPoints = [
                ["G", "Y", "F", "H", "Z", "I", "X", "G", "Z"],
                ["M", "G", "N"],
                ["X", "Y1", "H1"],
                ["I", "F1"],
            ]
            # ["G", "Y", "F", "H", "Z", "I", "F1"], ["H1", "Y1", "X", "G", "N"], ["M", "G"]
        elif type == "4":
            # symmetryKPoints = ["M","G","Y","F","H","Z","I","G","H1","Y1","X","G","N"]
            symmetryKPoints = [
                ["G", "Y", "F", "H", "Z", "I"],
                ["H1", "Y1", "X", "G", "N"],
                ["M", "G"],
            ]
            # ["G", "Y", "F", "H", "Z", "I"], ["H1", "Y1", "X", "G", "N"], ["M", "G"]
        elif type == "5":
            # symmetryKPoints = ["M","G","Y","F","L","I","G","I1","Z","H","F1","G","H1","Y1","X","G","N"]
            symmetryKPoints = [
                ["G", "Y", "F", "L", "I"],
                ["I1", "Z", "G", "X", "Y1", "H1"],
                ["H", "F1"],
                ["F2", "X"],
                ["M", "G", "N"],
                ["H", "Z"],
            ]
            # ["G", "Y", "F", "L", "I"], ["I1", "Z", "H", "F1"], ["H1", "Y1", "X", "G", "N"], ["M", "G"]
    elif crystalStructure.lower() in ["triclinic", "tri", "ap"]:
        # 14: ucv = pcv = [[1 0 0]', [2*cos(pi/3), 2*sin(pi/3), 0]', [3*cos(pi/4),
        #      3/sin(pi/3)*(cos(pi/5)-cos(pi/4)*cos(pi/3)),
        #      3/sin(pi/3)*sqrt(1-(cos(pi/5))**2-(cos(pi/4))**2-(cos(pi/3))**2
        #      + 2*cos(pi/5)*cos(pi/4)*cos(pi/3))]'] : [1 2 3], [pi/5,pi/4,pi/3]
        kpcv = np.linalg.inv(avecStd).transpose()
        a = np.linalg.norm(kpcv[:, 0])
        b = np.linalg.norm(kpcv[:, 1])
        c = np.linalg.norm(kpcv[:, 2])
        kalpha = np.dot(kpcv[:, 1], kpcv[:, 2]) / b / c
        kbeta = np.dot(kpcv[:, 2], kpcv[:, 0]) / c / a
        kgamma = np.dot(kpcv[:, 0], kpcv[:, 1]) / a / b
        if kalpha < 0:
            if kgamma < -epsilon:
                type = "1a"
            else:
                type = "2a"
        else:
            if kgamma > epsilon:
                type = "1b"
            else:
                type = "2b"
        if type in ["1a", "2a", "1b", "2b"]:
            symmetryKPoints = [
                ["X", "G", "Y"],
                ["L", "G", "Z"],
                ["N", "G", "M"],
                ["R", "G"],
            ]
            # ["X", "G", "Y"], ["L", "G", "Z"], ["N", "G", "M"], ["R", "G"]
    elif type == "0D":
        # 0D: isolate : [10 10 10]
        symmetryKPoints = ["G"]
    elif type == "1D":
        # 1D: along z direction. c << a,b : [10 10 1]
        symmetryKPoints = ["G", "X"]
    elif crystalStructure.lower() in ["square2d", "squ2d"]:
        # 2D1: along x-y plane. c >> a,b
        #     [[1 0 0]', [0, 1, 0]', [0 0 10]'] : [1 1 10]
        #     analog: Tetragonal
        symmetryKPoints = ["G", "X", "M", "G"]
    elif crystalStructure.lower() in ["rectangular2d", "rectangle2d", "rec2d"]:
        # 2D2: along x-y plane. c >> a,b
        #     [[1 0 0]', [0, 2, 0]', [0 0 10]'] : [1 1 10]
        #     analog: Orthorhombic
        symmetryKPoints = ["G", "X", "S", "Y", "G", "S"]
    elif crystalStructure.lower() in ["hexagonal2d", "hexagon2d", "hex2d"]:
        # 2D3: along x-y plane. c >> a,b
        #     [[1./2. -sqrt(3)/2 0]', [1./2., sqrt(3)/2, 0]', [0 0 10]'] : [1 1 10]
        #     analog: Hexagonal
        symmetryKPoints = ["G", "M", "K", "G"]
    elif crystalStructure.lower() in [
        "rhombic2d",
        "rhombus2d",
        "centeredrectangular2d",
        "rho2d",
    ]:
        # 2D4:  along x-y plane. c >> a,b
        #     [[1./2. -2/2 0]', [1./2., 2/2, 0]', [0 0 10]'] : [1 2 10]
        #     analog: CCenteredOrthorhombic
        #     pcv = [[1./2. -2/2 0]', [1./2., 2/2, 0]', [0 0 10]']
        #     ucv = [[1 0 0]', [0 2 0]', [0 0 10]']
        symmetryKPoints = ["S", "G", "X", "S", "X1", "Y", "G", "X1"]
    elif crystalStructure.lower() in ["oblique2d", "obl2d"]:
        # 2D5:  along x-y plane. c >> a,b
        #     [[2 0 0]', [3*cos(pi/5), 3*sin(pi/5), 0]', [0 0 10]'] : [2 3 10]
        #     analog: "Monoclinic"
        symmetryKPoints = ["H", "G", "Y", "H", "C", "G", "X", "H1", "G", "Y1", "H2"]
    else:
        raise Exception("Crystal structure not recognized.")
    return symmetryKPoints 
[docs]
def kValue2kSymbol(crystalStructure, primitiveCellVectors, kValue):
    """This function finds a high-symmetry k-point label from reduced coordinates.
    Args:
        crystalStructure (string):
            Name of the Bravais lattice.
        primitiveCellVectors (2D array):
            (3 x 3) array of row-vectors corresponding to the lattice vectors).
        kValue (1D array):
            High-symmetry k-point fractional coordinates.
    Returns:
        kSymbol (string):
            High-symmetry k-point label.
    """
    if isinstance(kValue, list):
        return [
            kValue2kSymbol(crystalStructure, primitiveCellVectors, k) for k in kValue
        ]
    if isinstance(kValue, str):
        return kValue
    kptDict = kSymbol_2_kValue_dict(crystalStructure, primitiveCellVectors)
    kSymbol = "!"
    for i in kptDict.keys():
        if np.allclose(kValue, kptDict[i], rtol=1.0e-5, atol=1.0e-5):
            kSymbol = i
            break
    return kSymbol 
[docs]
def kSymbol2kValue(crystalStructure, primitiveCellVectors, kSymbol):
    """This function is to convert a high-symmetry k-point label to reduced coordinates.
    This function is to convert a conventional symbol for a high
    symmetrical point in k space into its corresponding coordinate
    value, where the unit of the value is the three reciprocal primitive
    cell vectors.
    Please note that each symbol actually represents a set of infinitely
    many equivalent points and the output coordinates is just for one of them.
    Args:
        crystalStructure  (string):
            Name of the Bravais lattice.
        primitiveCellVectors  (2D array):
            3 x 3 array of row-vectors corresponding to the lattice vectors).
        kSymbol (string):
            High-symmetry k-point label.
    Returns:
        kValue  (1D array):
           High-symmetry k-point fractional coordinates.
    """
    if is_row_vector(kSymbol):
        return np.array(kSymbol)
    if isinstance(kSymbol, list):
        return [
            kSymbol2kValue(crystalStructure, primitiveCellVectors, k) for k in kSymbol
        ]
    if not isinstance(kSymbol, str):
        return np.array(kSymbol)
    kptDict = kSymbol_2_kValue_dict(crystalStructure, primitiveCellVectors)
    if kSymbol not in kptDict.keys():
        raise Exception(
            "Unknown symbol "
            + kSymbol
            + " for Bravais lattice "
            + crystalStructure
            + "."
        )
    return np.array(kptDict[kSymbol]) 
[docs]
def kSymbol_2_kValue_dict(crystalStructure, primitiveCellVectors):
    """This function returns a dictionary of the high-symmetry k-point labels
    of a given crystal structure in reduced coordinates.
    This is simply the convention for labeling points of high symmetry in
    the Brillouin zone.  It"s origin is: Bouckaert, Smoluchowski, and
    Wigner, "Theory of Brillouin Zones and Symmetry Properties of Wave
    Functions in Crystals," Phys. Rev. 50, p. 58 (1936).  The guide to all
    the details of this is John C. Slater, "Symmetry and Energy Bands in
    Crystals" (reprinted by Dover in 1972).  It has all the 3-d crystal
    structures and, I suspect, 2-d as well.  These labels may make some
    sense in the context of group theory (or perhaps in Hungarian), but
    they are commonly regarded as an arbitrary but common convention.
    It is also called `critical point <http://en.wikipedia.org/wiki/Brillouin_zone>`_.
    Args:
        crystalStructure (string):
           Name of the Bravais lattice.
        primitiveCellVectors (2D array):
           3 x 3 array of row-vectors corresponding to the lattice vectors).
    Returns:
        kptDict (dict):
           High-symmetry k-points in fractional coordinates.
    Remark:
        Lei Liu, HZWTech
        2015-10
        Vincent Michaud-Rioux
        2020-06-23
    """
    primitiveCellVectors = (
        primitiveCellVectors.transpose()
    )  # here primitiveCellVectors = [a1 a2 a3]
    kptDict = {}
    epsilon = 1e-3
    if crystalStructure.lower() in ["cubic", "cub", "simplecubic", "sc", "cp"]:
        # 1: ucv = pcv = [[1 0., 0]',[0., 1 0]',[0., 0., 1]']
        kSymbols = ["G", "X", "M", "R"]
        kptDict[kSymbols[0]] = [0.0, 0.0, 0.0]  # Gamma: Center of the Brillouin zone
        kptDict[kSymbols[1]] = [0.0, 0.5, 0.0]  # X: Center of a face
        kptDict[kSymbols[2]] = [0.5, 0.5, 0.0]  # M: Center of an edge
        kptDict[kSymbols[3]] = [0.5, 0.5, 0.5]  # R: Corner point
    elif crystalStructure.lower() in ["facecenteredcubic", "fcc", "cf"]:
        # 2: pcv = [[0., .5, .5]',[.5,0,.5]',[.5, .5, 0]']
        #    ucv = [[1 0., 0]',[0., 1 0]',[0., 0., 1]']
        kSymbols = ["G", "K", "L", "U", "W", "X"]
        kptDict[kSymbols[0]] = [0.0, 0.0, 0]  # Gamma: Center of the Brillouin zone
        kptDict[kSymbols[1]] = [
            3 / 8,
            3 / 8,
            3 / 4,
        ]  # K: Middle of an edge joining two hexagonal faces
        kptDict[kSymbols[2]] = [0.5, 0.5, 0.5]  # L: Center of a hexagonal face
        kptDict[kSymbols[3]] = [
            5 / 8,
            1 / 4,
            5 / 8,
        ]  # U: Middle of an edge joining a hexagonal and a square face
        kptDict[kSymbols[4]] = [0.5, 1 / 4, 3 / 4]  # W : Corner point
        kptDict[kSymbols[5]] = [0.5, 0.0, 0.5]  # X: Center of a square face
    elif crystalStructure.lower() in ["bodycenteredcubic", "bcc", "ci"]:
        # 3: pcv = [[-.5, .5, .5]',[.5,-.5,.5]',[.5, .5, -.5]']
        #    ucv = [[1 0., 0]',[0., 1 0]',[0., 0., 1]']
        kSymbols = ["G", "H", "P", "N"]
        kptDict[kSymbols[0]] = [0.0, 0.0, 0]  # Gamma: Center of the Brillouin zone
        kptDict[kSymbols[1]] = [0.5, -0.5, 0.5]  # H: Corner point joining four edges
        kptDict[kSymbols[2]] = [
            1 / 4,
            1 / 4,
            1 / 4,
        ]  # P: Corner point joining three edges
        kptDict[kSymbols[3]] = [0.0, 0.0, 0.5]  # N: Center of a face
    elif crystalStructure.lower() in ["tetragonal", "tet", "tp"]:
        # 4: ucv = pcv = [[1 0., 0]',[0., 1 0]',[0., 0., 5]']
        kSymbols = ["G", "A", "M", "R", "X", "Z"]
        kptDict[kSymbols[0]] = [0.0, 0.0, 0]  # Gamma: Center of the Brillouin zone
        kptDict[kSymbols[1]] = [0.5, 0.5, 0.5]
        kptDict[kSymbols[2]] = [0.5, 0.5, 0]
        kptDict[kSymbols[3]] = [0.0, 0.5, 0.5]
        kptDict[kSymbols[4]] = [0.0, 0.5, 0]
        kptDict[kSymbols[5]] = [0.0, 0.0, 0.5]
    elif crystalStructure.lower() in ["bodycenteredtetragonal", "bct", "ti"]:
        # 5: pcv = [[-.5, .5, 5/2]',[.5,-.5,5/2]',[.5, .5, -5/2]']
        #    ucv = [[1 0., 0]',[0., 1 0]',[0., 0., 5]']
        pcv4bcc = np.array(
            [[-0.5, 0.5, 0.5], [0.5, -0.5, 0.5], [0.5, 0.5, -0.5]]
        ).transpose()
        ucv4bcc = np.eye(3)
        pcv = primitiveCellVectors
        ucv = np.matmul(pcv, np.linalg.solve(pcv4bcc, ucv4bcc))
        if np.linalg.norm(ucv[:, 2]) < np.linalg.norm(ucv[:, 0]):
            type = "1"
        else:
            type = "2"
        if type == "1":
            a = np.linalg.norm(ucv[:, 0])
            c = np.linalg.norm(ucv[:, 2])
            eta = (1 + c**2 / a**2) / 4
            kSymbols = ["G", "M", "N", "P", "X", "Z", "Z1"]
            kptDict[kSymbols[0]] = [0.0, 0.0, 0]
            kptDict[kSymbols[1]] = [-0.5, 0.5, 0.5]
            kptDict[kSymbols[2]] = [0.0, 0.5, 0]
            kptDict[kSymbols[3]] = [1 / 4, 1 / 4, 1 / 4]
            kptDict[kSymbols[4]] = [0.0, 0.0, 0.5]
            kptDict[kSymbols[5]] = [eta, eta, -eta]
            kptDict[kSymbols[6]] = [-eta, 1 - eta, eta]
        elif type == "2":
            a = np.linalg.norm(ucv[:, 0])
            c = np.linalg.norm(ucv[:, 2])
            eta = (1.0 + a**2 / c**2) / 4.0
            zeta = a**2 / c**2 / 2.0
            kSymbols = ["G", "N", "P", "X", "Z", "S", "S1", "Y", "Y1"]
            kptDict[kSymbols[0]] = [0.0, 0.0, 0]
            kptDict[kSymbols[1]] = [0.0, 0.5, 0]
            kptDict[kSymbols[2]] = [1 / 4, 1 / 4, 1 / 4]
            kptDict[kSymbols[3]] = [0.0, 0.0, 0.5]
            kptDict[kSymbols[4]] = [0.5, 0.5, -0.5]
            kptDict[kSymbols[5]] = [-eta, eta, eta]
            kptDict[kSymbols[6]] = [eta, 1 - eta, -eta]
            kptDict[kSymbols[7]] = [-zeta, zeta, 0.5]
            kptDict[kSymbols[8]] = [0.5, 0.5, -zeta]
    elif crystalStructure.lower() in ["orthorhombic", "orc", "op"]:
        # 6: ucv = pcv = [[1 0., 0]',[0., 2 0]',[0., 0., 3]']
        kSymbols = ["G", "R", "S", "T", "U", "X", "Y", "Z"]
        kptDict[kSymbols[0]] = [0.0, 0.0, 0]
        kptDict[kSymbols[1]] = [0.5, 0.5, 0.5]
        kptDict[kSymbols[2]] = [0.5, 0.5, 0]
        kptDict[kSymbols[3]] = [0.0, 0.5, 0.5]
        kptDict[kSymbols[4]] = [0.5, 0.0, 0.5]
        kptDict[kSymbols[5]] = [0.5, 0.0, 0]
        kptDict[kSymbols[6]] = [0.0, 0.5, 0]
        kptDict[kSymbols[7]] = [0.0, 0.0, 0.5]
    elif crystalStructure.lower() in ["facecenteredorthorhombic", "orcf", "of"]:
        # 7: pcv = [[0., 2/2 3/2]',[.5,0,3/2]',[.5, 2/2 0]']
        #    ucv = [[1 0., 0]',[0., 2 0]',[0., 0., 3]']
        pcv4fcc = np.array([[0.0, 0.5, 0.5], [0.5, 0, 0.5], [0.5, 0.5, 0]]).transpose()
        ucv4fcc = np.eye(3)
        pcv = primitiveCellVectors
        ucv = np.matmul(pcv, np.linalg.solve(pcv4fcc, ucv4fcc))
        a = np.linalg.norm(ucv[:, 0])
        b = np.linalg.norm(ucv[:, 1])
        c = np.linalg.norm(ucv[:, 2])
        d = (1 / b**2 + 1 / c**2 - 1 / a**2) * max([a**2, b**2, c**2])
        if d < -epsilon:
            type = "1"
        elif d > epsilon:
            type = "2"
        else:
            type = "3"
        if type in ["1", "3"]:
            eta = (1.0 + a**2 / b**2 + a**2 / c**2) / 4.0
            zeta = (1.0 + a**2 / b**2 - a**2 / c**2) / 4.0
            kSymbols = ["G", "L", "T", "Y", "Z", "A", "A1", "X", "X1"]
            kptDict[kSymbols[0]] = [0.0, 0.0, 0]
            kptDict[kSymbols[1]] = [0.5, 0.5, 0.5]
            kptDict[kSymbols[2]] = [1, 0.5, 0.5]
            kptDict[kSymbols[3]] = [0.5, 0.0, 0.5]
            kptDict[kSymbols[4]] = [0.5, 0.5, 0]
            kptDict[kSymbols[5]] = [0.5, 0.5 + zeta, zeta]
            kptDict[kSymbols[6]] = [0.5, 0.5 - zeta, 1 - zeta]
            kptDict[kSymbols[7]] = [0.0, eta, eta]
            kptDict[kSymbols[8]] = [1, 1 - eta, 1 - eta]
        elif type == "2":
            eta = (1 + a**2 / b**2 - a**2 / c**2) / 4
            delta = (1 + b**2 / a**2 - b**2 / c**2) / 4
            phi = (1 + c**2 / b**2 - c**2 / a**2) / 4
            kSymbols = ["G", "L", "X", "Y", "Z", "C", "C1", "D", "D1", "H", "H1"]
            kptDict[kSymbols[0]] = [0.0, 0.0, 0]
            kptDict[kSymbols[1]] = [0.5, 0.5, 0.5]
            kptDict[kSymbols[2]] = [0.0, 0.5, 0.5]
            kptDict[kSymbols[3]] = [0.5, 0.0, 0.5]
            kptDict[kSymbols[4]] = [0.5, 0.5, 0]
            kptDict[kSymbols[5]] = [0.5, 0.5 - eta, 1 - eta]
            kptDict[kSymbols[6]] = [0.5, 0.5 + eta, eta]
            kptDict[kSymbols[7]] = [0.5 - delta, 0.5, 1 - delta]
            kptDict[kSymbols[8]] = [0.5 + delta, 0.5, delta]
            kptDict[kSymbols[9]] = [1 - phi, 0.5 - phi, 0.5]
            kptDict[kSymbols[10]] = [phi, 0.5 + phi, 0.5]
    elif crystalStructure.lower() in ["bodycenteredorthorhombic", "orci", "oi"]:
        # 8: pcv = [[-.5, 2/2 3/2]',[.5,-2/2,3/2]',[.5, 2/2 -3/2]']
        #    ucv = [[1 0., 0]',[0., 2 0]',[0., 0., 3]']
        pcv4bcc = np.array(
            [[-0.5, 0.5, 0.5], [0.5, -0.5, 0.5], [0.5, 0.5, -0.5]]
        ).transpose()
        ucv4bcc = np.eye(3)
        pcv = primitiveCellVectors
        ucv = np.matmul(pcv, np.linalg.solve(pcv4bcc, ucv4bcc))
        a = np.linalg.norm(ucv[:, 0])
        b = np.linalg.norm(ucv[:, 1])
        c = np.linalg.norm(ucv[:, 2])
        zeta = (1 + a**2 / c**2) / 4
        eta = (1 + b**2 / c**2) / 4
        delta = (b**2 - a**2) / (4 * c**2)
        mu = (a**2 + b**2) / (4 * c**2)
        kSymbols = ["G", "R", "S", "T", "W", "Z", "L", "L1", "L2", "X", "X1", "Y", "Y1"]
        kptDict[kSymbols[0]] = [0.0, 0.0, 0]
        kptDict[kSymbols[1]] = [0.0, 0.5, 0]
        kptDict[kSymbols[2]] = [0.5, 0.0, 0]
        kptDict[kSymbols[3]] = [0.0, 0.0, 0.5]
        kptDict[kSymbols[4]] = [1 / 4, 1 / 4, 1 / 4]
        kptDict[kSymbols[5]] = [0.5, 0.5, -0.5]
        kptDict[kSymbols[6]] = [-mu, mu, 0.5 - delta]
        kptDict[kSymbols[7]] = [mu, -mu, 0.5 + delta]
        kptDict[kSymbols[8]] = [0.5 - delta, 0.5 + delta, -mu]
        kptDict[kSymbols[9]] = [-zeta, zeta, zeta]
        kptDict[kSymbols[10]] = [zeta, 1 - zeta, -zeta]
        kptDict[kSymbols[11]] = [eta, -eta, eta]
        kptDict[kSymbols[12]] = [1 - eta, eta, -eta]
    elif crystalStructure.lower() in ["ccenteredorthorhombic", "orcc", "os"]:
        # 9: pcv = [[.5, -2/2 0]',[.5,2/2,0]',[0., 0., 3]']
        #    ucv = [[1 0., 0]',[0., 2 0]',[0., 0., 3]']
        pcv = primitiveCellVectors
        a = np.linalg.norm(pcv[:, 0] + pcv[:, 1])
        b = np.linalg.norm(pcv[:, 0] - pcv[:, 1])
        zeta = (1 + a**2 / b**2) / 4
        kSymbols = ["G", "R", "S", "T", "Y", "Z", "A", "A1", "X", "X1"]
        kptDict[kSymbols[0]] = [0.0, 0.0, 0]
        kptDict[kSymbols[1]] = [0.0, 0.5, 0.5]
        kptDict[kSymbols[2]] = [0.0, 0.5, 0]
        kptDict[kSymbols[3]] = [-0.5, 0.5, 0.5]
        kptDict[kSymbols[4]] = [-0.5, 0.5, 0]
        kptDict[kSymbols[5]] = [0.0, 0.0, 0.5]
        kptDict[kSymbols[6]] = [zeta, zeta, 0.5]
        kptDict[kSymbols[7]] = [-zeta, 1 - zeta, 0.5]
        kptDict[kSymbols[8]] = [zeta, zeta, 0]
        kptDict[kSymbols[9]] = [-zeta, 1 - zeta, 0]
    elif crystalStructure.lower() in ["hexagonal", "hex", "hcp", "hp"]:
        # 10: ucv = pcv = [[.5, -sqrt(3)/2 0]',[.5,sqrt(3)/2,0]',[0., 0., 3]']
        kSymbols = ["G", "A", "H", "K", "L", "M"]
        kptDict[kSymbols[0]] = [0.0, 0.0, 0]
        kptDict[kSymbols[1]] = [0.0, 0.0, 0.5]
        kptDict[kSymbols[2]] = [1 / 3, 1 / 3, 0.5]
        kptDict[kSymbols[3]] = [1 / 3, 1 / 3, 0]
        kptDict[kSymbols[4]] = [0.5, 0.0, 0.5]
        kptDict[kSymbols[5]] = [0.5, 0.0, 0]
    elif crystalStructure.lower() in ["rhombohedral", "rhl", "hr"]:
        # 11: ucv = pcv = [[cos(pi/5) -sin(pi/5) 0]',[cos(pi/5) sin(pi/5),0]',
        #      [cos(2*pi/5)/cos(pi/5),0,sqrt(1-(cos(2*pi/5)/cos(pi/5))**2)]']
        pcv = primitiveCellVectors
        cosalpha = (
            np.dot(pcv[:, 2], pcv[:, 0])
            / np.linalg.norm(pcv[:, 0])
            / np.linalg.norm(pcv[:, 2])
        )
        if cosalpha > 0:
            type = "1"
        else:
            type = "2"
        if type == "1":
            eta = (1 + 4 * cosalpha) / (2 + 4 * cosalpha)
            nu = 3 / 4 - eta / 2
            kSymbols = ["G", "F", "L", "L1", "Z", "B", "B1", "P", "P1", "P2", "Q", "X"]
            kptDict[kSymbols[0]] = [0.0, 0.0, 0]
            kptDict[kSymbols[1]] = [0.5, 0.5, 0]
            kptDict[kSymbols[2]] = [0.5, 0.0, 0]
            kptDict[kSymbols[3]] = [0.0, 0.0, -0.5]
            kptDict[kSymbols[4]] = [0.5, 0.5, 0.5]
            kptDict[kSymbols[5]] = [eta, 0.5, 1 - eta]
            kptDict[kSymbols[6]] = [0.5, 1 - eta, eta - 1]
            kptDict[kSymbols[7]] = [eta, nu, nu]
            kptDict[kSymbols[8]] = [1 - nu, 1 - nu, 1 - eta]
            kptDict[kSymbols[9]] = [nu, nu, eta - 1]
            kptDict[kSymbols[10]] = [1 - nu, nu, 0]
            kptDict[kSymbols[11]] = [nu, 0.0, -nu]
        elif type == "2":
            eta = (0.5) * (1 + cosalpha) / (1 - cosalpha)
            nu = 3 / 4 - eta / 2
            kSymbols = ["G", "F", "L", "Z", "P", "P1", "Q", "Q1"]
            kptDict[kSymbols[0]] = [0.0, 0.0, 0]
            kptDict[kSymbols[1]] = [0.5, -0.5, 0]
            kptDict[kSymbols[2]] = [0.5, 0.0, 0]
            kptDict[kSymbols[3]] = [0.5, -0.5, 0.5]
            kptDict[kSymbols[4]] = [1 - nu, -nu, 1 - nu]
            kptDict[kSymbols[5]] = [nu, nu - 1, nu - 1]
            kptDict[kSymbols[6]] = [eta, eta, eta]
            kptDict[kSymbols[7]] = [1 - eta, -eta, -eta]
    elif crystalStructure.lower() in ["monoclinic", "mcl", "mp"]:
        # 12: ucv = pcv = [[1 0., 0]',[0., 2 0]',[0,3*cos(pi/5),3*sin(pi/5)]']
        pcv = primitiveCellVectors
        b = np.linalg.norm(pcv[:, 1])
        c = np.linalg.norm(pcv[:, 2])
        cosalpha = np.dot(pcv[:, 1], pcv[:, 2]) / b / c
        sin2alpha = 1 - cosalpha**2
        eta = (1 - b * cosalpha / c) / (2 * sin2alpha)
        nu = 0.5 - eta * c * cosalpha / b
        kSymbols = [
            "G",
            "A",
            "C",
            "D",
            "D1",
            "E",
            "X",
            "Y",
            "Y1",
            "Z",
            "H",
            "H1",
            "H2",
            "M",
            "M1",
            "M2",
        ]
        kptDict[kSymbols[0]] = [0.0, 0.0, 0]
        kptDict[kSymbols[1]] = [0.5, 0.5, 0]
        kptDict[kSymbols[2]] = [0.0, 0.5, 0.5]
        kptDict[kSymbols[3]] = [0.5, 0.0, 0.5]
        kptDict[kSymbols[4]] = [0.5, 0.0, -0.5]
        kptDict[kSymbols[5]] = [0.5, 0.5, 0.5]
        kptDict[kSymbols[6]] = [0.0, 0.5, 0]
        kptDict[kSymbols[7]] = [0.0, 0.0, 0.5]
        kptDict[kSymbols[8]] = [0.0, 0.0, -0.5]
        kptDict[kSymbols[9]] = [0.5, 0.0, 0]
        kptDict[kSymbols[10]] = [0.0, eta, 1 - nu]
        kptDict[kSymbols[11]] = [0.0, 1 - eta, nu]
        kptDict[kSymbols[12]] = [0.0, eta, -nu]
        kptDict[kSymbols[13]] = [0.5, eta, 1 - nu]
        kptDict[kSymbols[14]] = [0.5, 1 - eta, nu]
        kptDict[kSymbols[15]] = [0.5, eta, -nu]
    elif crystalStructure.lower() in ["ccenteredmonoclinic", "mclc", "ms"]:
        # 13: pcv = [[.5, 2/2 0]',[-.5, 2/2 0]',[0,3*cos(pi/5),3*sin(pi/5)]']
        #     ucv = [[1 0., 0]',[0., 2 0]',[0,3*cos(pi/5),3*sin(pi/5)]']
        pcv = primitiveCellVectors
        a = np.linalg.norm(pcv[:, 0] - pcv[:, 1])
        b = np.linalg.norm(pcv[:, 0] + pcv[:, 1])
        c = np.linalg.norm(pcv[:, 2])
        kpcv = np.linalg.inv(pcv).transpose()
        kgamma = (
            np.dot(kpcv[:, 0], kpcv[:, 1])
            / np.linalg.norm(kpcv[:, 0])
            / np.linalg.norm(kpcv[:, 1])
        )
        if kgamma < -epsilon:
            type = "1"
        elif abs(kgamma) < epsilon:
            type = "2"
        else:
            cosalpha = np.dot(pcv[:, 0] + pcv[:, 1], pcv[:, 2]) / b / c
            sin2alpha = 1 - cosalpha**2
            d = b * cosalpha / c + b**2 * sin2alpha / a**2 - 1
            if d < -epsilon:
                type = "3"
            elif abs(d) < epsilon:
                type = "4"
            else:
                type = "5"
        if type in ["1", "2"]:
            cosalpha = np.dot(pcv[:, 0] + pcv[:, 1], pcv[:, 2]) / b / c
            sin2alpha = 1 - cosalpha**2
            zeta = (2 - b * cosalpha / c) / (4 * sin2alpha)
            eta = 0.5 + 2 * zeta * c * cosalpha / b
            psi = 3 / 4 - a**2 / (4 * b**2 * sin2alpha)
            phi = psi + (3 / 4 - psi) * b * cosalpha / c
            kSymbols = [
                "G",
                "N",
                "N1",
                "L",
                "M",
                "Y",
                "Y1",
                "Z",
                "F",
                "F1",
                "F2",
                "F3",
                "I",
                "I1",
                "X",
                "X1",
                "X2",
            ]
            kptDict[kSymbols[0]] = [0.0, 0.0, 0]
            kptDict[kSymbols[1]] = [0.5, 0.0, 0]
            kptDict[kSymbols[2]] = [0.0, -0.5, 0]
            kptDict[kSymbols[3]] = [0.5, 0.5, 0.5]
            kptDict[kSymbols[4]] = [0.5, 0.0, 0.5]
            kptDict[kSymbols[5]] = [0.5, 0.5, 0]
            kptDict[kSymbols[6]] = [-0.5, -0.5, 0]
            kptDict[kSymbols[7]] = [0.0, 0.0, 0.5]
            kptDict[kSymbols[8]] = [1 - zeta, 1 - zeta, 1 - eta]
            kptDict[kSymbols[9]] = [zeta, zeta, eta]
            kptDict[kSymbols[10]] = [-zeta, -zeta, 1 - eta]
            kptDict[kSymbols[11]] = [1 - zeta, -zeta, 1 - eta]
            kptDict[kSymbols[12]] = [phi, 1 - phi, 0.5]
            kptDict[kSymbols[13]] = [1 - phi, phi - 1, 0.5]
            kptDict[kSymbols[14]] = [1 - psi, psi - 1, 0]
            kptDict[kSymbols[15]] = [psi, 1 - psi, 0]
            kptDict[kSymbols[16]] = [psi - 1, -psi, 0]
        elif type in ["3", "4"]:
            cosalpha = np.dot(pcv[:, 0] + pcv[:, 1], pcv[:, 2]) / b / c
            sin2alpha = 1 - cosalpha**2
            mu = (1 + b**2 / a**2) / 4
            delta = b * c * cosalpha / (2 * a**2)
            zeta = mu - 1 / 4 + (1 - b * cosalpha / c) / (4 * sin2alpha)
            eta = 0.5 + 2 * zeta * c * cosalpha / b
            phi = 1 + zeta - 2 * mu
            psi = eta - 2 * delta
            kSymbols = [
                "G",
                "I",
                "M",
                "N",
                "N1",
                "X",
                "Z",
                "F",
                "F1",
                "F2",
                "H",
                "H1",
                "H2",
                "Y",
                "Y1",
                "Y2",
                "Y3",
            ]
            kptDict[kSymbols[0]] = [0.0, 0.0, 0]
            kptDict[kSymbols[1]] = [0.5, -0.5, 0.5]
            kptDict[kSymbols[2]] = [0.5, 0.0, 0.5]
            kptDict[kSymbols[3]] = [0.5, 0.0, 0]
            kptDict[kSymbols[4]] = [0.0, -0.5, 0]
            kptDict[kSymbols[5]] = [0.5, -0.5, 0]
            kptDict[kSymbols[6]] = [0.0, 0.0, 0.5]
            kptDict[kSymbols[7]] = [1 - phi, 1 - phi, 1 - psi]
            kptDict[kSymbols[8]] = [phi, phi - 1, psi]
            kptDict[kSymbols[9]] = [1 - phi, -phi, 1 - psi]
            kptDict[kSymbols[10]] = [zeta, zeta, eta]
            kptDict[kSymbols[11]] = [1 - zeta, -zeta, 1 - eta]
            kptDict[kSymbols[12]] = [-zeta, -zeta, 1 - eta]
            kptDict[kSymbols[13]] = [mu, mu, delta]
            kptDict[kSymbols[14]] = [1 - mu, -mu, -delta]
            kptDict[kSymbols[15]] = [-mu, -mu, -delta]
            kptDict[kSymbols[16]] = [mu, mu - 1, delta]
        elif type == "5":
            cosalpha = np.dot(pcv[:, 0] + pcv[:, 1], pcv[:, 2]) / b / c
            sin2alpha = 1 - cosalpha**2
            zeta = (b**2 / a**2 + (1 - b * cosalpha / c) / sin2alpha) / 4
            eta = 0.5 + 2 * zeta * c * cosalpha / b
            mu = eta / 2 + b**2 / (4 * a**2) - b * c * cosalpha / (2 * a**2)
            nu = 2 * mu - zeta
            omega = (4 * nu - 1 - b**2 * sin2alpha / a**2) * c / (2 * b * cosalpha)
            delta = zeta * c * cosalpha / b + omega / 2 - 1 / 4
            rho = 1 - zeta * a**2 / b**2
            kSymbols = [
                "G",
                "L",
                "M",
                "N",
                "N1",
                "X",
                "Z",
                "F",
                "F1",
                "F2",
                "H",
                "H1",
                "H2",
                "I",
                "I1",
                "Y",
                "Y1",
                "Y2",
                "Y3",
            ]
            kptDict[kSymbols[0]] = [0.0, 0.0, 0]
            kptDict[kSymbols[1]] = [0.5, 0.5, 0.5]
            kptDict[kSymbols[2]] = [0.5, 0.0, 0.5]
            kptDict[kSymbols[3]] = [0.5, 0.0, 0]
            kptDict[kSymbols[4]] = [0.0, -0.5, 0]
            kptDict[kSymbols[5]] = [0.5, -0.5, 0]
            kptDict[kSymbols[6]] = [0.0, 0.0, 0.5]
            kptDict[kSymbols[7]] = [nu, nu, omega]
            kptDict[kSymbols[8]] = [1 - nu, 1 - nu, 1 - omega]
            kptDict[kSymbols[9]] = [nu, nu - 1, omega]
            kptDict[kSymbols[10]] = [zeta, zeta, eta]
            kptDict[kSymbols[11]] = [1 - zeta, -zeta, 1 - eta]
            kptDict[kSymbols[12]] = [-zeta, -zeta, 1 - eta]
            kptDict[kSymbols[13]] = [rho, 1 - rho, 0.5]
            kptDict[kSymbols[14]] = [1 - rho, rho - 1, 0.5]
            kptDict[kSymbols[15]] = [mu, mu, delta]
            kptDict[kSymbols[16]] = [1 - mu, -mu, -delta]
            kptDict[kSymbols[17]] = [-mu, -mu, -delta]
            kptDict[kSymbols[18]] = [mu, mu - 1, delta]
    elif crystalStructure.lower() in ["triclinic", "tri", "ap"]:
        # 14: ucv = pcv = [[1 0., 0]',[2*cos(pi/3),2*sin(pi/3),0]',[3*cos(pi/4),
        #      3/sin(pi/3)*(cos(pi/5)-cos(pi/4)*cos(pi/3)),
        #      3/sin(pi/3)*sqrt(1-(cos(pi/5))**2-(cos(pi/4))**2-(cos(pi/3))**2
        #      + 2*cos(pi/5)*cos(pi/4)*cos(pi/3))]'] :: [1 2 3],[pi/5,pi/4,pi/3]
        kpcv = np.linalg.inv(primitiveCellVectors).transpose()
        a = np.linalg.norm(kpcv[:, 0])
        b = np.linalg.norm(kpcv[:, 1])
        c = np.linalg.norm(kpcv[:, 2])
        kalpha = np.dot(kpcv[:, 1], kpcv[:, 2]) / b / c
        # kbeta = np.dot(kpcv[:,2],kpcv[:,0])/c/a
        kgamma = np.dot(kpcv[:, 0], kpcv[:, 1]) / a / b
        if kalpha < 0:
            if kgamma < -epsilon:
                type = "1a"
            else:
                type = "2a"
        else:
            if kgamma > epsilon:
                type = "1b"
            else:
                type = "2b"
        if type in ["1a", "2a"]:
            kSymbols = ["G", "L", "M", "N", "R", "X", "Y", "Z"]
            kptDict[kSymbols[0]] = [0.0, 0.0, 0]
            kptDict[kSymbols[1]] = [0.5, 0.5, 0]
            kptDict[kSymbols[2]] = [0.0, 0.5, 0.5]
            kptDict[kSymbols[3]] = [0.5, 0.0, 0.5]
            kptDict[kSymbols[4]] = [0.5, 0.5, 0.5]
            kptDict[kSymbols[5]] = [0.5, 0.0, 0]
            kptDict[kSymbols[6]] = [0.0, 0.5, 0]
            kptDict[kSymbols[7]] = [0.0, 0.0, 0.5]
        elif type in ["1b", "2b"]:
            kSymbols = ["G", "L", "M", "N", "R", "X", "Y", "Z"]
            kptDict[kSymbols[0]] = [0.0, 0.0, 0]
            kptDict[kSymbols[1]] = [0.5, -0.5, 0]
            kptDict[kSymbols[2]] = [0.0, 0.0, 0.5]
            kptDict[kSymbols[3]] = [-0.5, -0.5, 0.5]
            kptDict[kSymbols[4]] = [0.0, -0.5, 0.5]
            kptDict[kSymbols[5]] = [0.0, -0.5, 0]
            kptDict[kSymbols[6]] = [0.5, 0.0, 0]
            kptDict[kSymbols[7]] = [-0.5, 0.0, 0.5]
    elif crystalStructure == "0D":
        # 0D: isolate :: [10., 10., 10]
        kSymbols = ["G"]
        kptDict[kSymbols[0]] = [0.0, 0.0, 0]
    elif crystalStructure == "1D":
        # 1D: along z direction. c << a,b :: [10., 10., 1]
        kSymbols = ["G", "X"]
        kptDict[kSymbols[0]] = [0.0, 0.0, 0]
        kptDict[kSymbols[1]] = [0.0, 0.0, 0.5]
    elif crystalStructure.lower() in ["square2d", "squ2d"]:
        # 2D1: along x-y plane. c >> a,b
        #     [[1 0., 0]',[0,1,0]',[0., 0., 10]'] :: [1 1 10]
        #     analog: Tetragonal
        kSymbols = ["G", "X", "M"]
        kptDict[kSymbols[0]] = [0.0, 0.0, 0]
        kptDict[kSymbols[1]] = [0.0, 0.5, 0]
        kptDict[kSymbols[2]] = [0.5, 0.5, 0]
    elif crystalStructure.lower() in ["rectangular2d", "rectangle2d", "rec2d"]:
        # 2D2: along x-y plane. c >> a,b
        #     [[1 0., 0]',[0,2,0]',[0., 0., 10]'] :: [1 1 10]
        #     analog: Orthorhombic
        kSymbols = ["G", "X", "Y", "S"]
        kptDict[kSymbols[0]] = [0.0, 0.0, 0]
        kptDict[kSymbols[1]] = [0.5, 0.0, 0]
        kptDict[kSymbols[2]] = [0.0, 0.5, 0]
        kptDict[kSymbols[3]] = [0.5, 0.5, 0]
    elif crystalStructure.lower() in ["hexagonal2d", "hexagon2d", "hex2d"]:
        # 2D3: along x-y plane. c >> a,b
        #     [[.5, -sqrt(3)/2 0]',[.5,sqrt(3)/2,0]',[0., 0., 10]'] :: [1 1 10]
        #     analog: Hexagonal
        kSymbols = ["G", "M", "K"]
        kptDict[kSymbols[0]] = [0.0, 0.0, 0]
        kptDict[kSymbols[1]] = [0.5, 0.0, 0]
        kptDict[kSymbols[2]] = [1 / 3, 1 / 3, 0]
    elif crystalStructure.lower() in [
        "rhombic2d",
        "rhombus2d",
        "centeredrectangular2d",
        "rho2d",
    ]:
        # 2D4:  along x-y plane. c >> a,b
        #     [[.5, -2/2 0]',[.5,2/2,0]',[0., 0., 10]'] :: [1 2 10]
        #     analog: CCenteredOrthorhombic
        #     pcv = [[.5, -2/2 0]',[.5,2/2,0]',[0., 0., 10]']
        #     ucv = [[1 0., 0]',[0., 2 0]',[0., 0., 10]']
        pcv = primitiveCellVectors
        a = np.linalg.norm(pcv[:, 0] + pcv[:, 1])
        b = np.linalg.norm(pcv[:, 0] - pcv[:, 1])
        zeta = (1 + a**2 / b**2) / 4
        kSymbols = ["G", "S", "Y", "X", "X1"]
        kptDict[kSymbols[0]] = [0.0, 0.0, 0]
        kptDict[kSymbols[1]] = [0.0, 0.5, 0]
        kptDict[kSymbols[2]] = [-0.5, 0.5, 0]
        kptDict[kSymbols[3]] = [zeta, zeta, 0]
        kptDict[kSymbols[4]] = [-zeta, 1 - zeta, 0]
    elif crystalStructure.lower() in ["oblique2d", "obl2d"]:
        # 2D5:  along x-y plane. c >> a,b
        #     [[2 0., 0]',[3*cos(pi/5),3*sin(pi/5),0]',[0., 0., 10]'] :: [2 3 10]
        #     analog: "Monoclinic"
        pcv = primitiveCellVectors
        b = np.linalg.norm(pcv[:, 0])
        c = np.linalg.norm(pcv[:, 1])
        cosalpha = np.dot(pcv[:, 0], pcv[:, 1]) / b / c
        sin2alpha = 1 - cosalpha**2
        eta = (1 - b * cosalpha / c) / (2 * sin2alpha)
        nu = 0.5 - eta * c * cosalpha / b
        kSymbols = ["G", "C", "X", "Y", "Y1", "H", "H1", "H2"]
        kptDict[kSymbols[0]] = [0.0, 0.0, 0]
        kptDict[kSymbols[1]] = [0.5, 0.5, 0]
        kptDict[kSymbols[2]] = [0.5, 0.0, 0]
        kptDict[kSymbols[3]] = [0.0, 0.5, 0]
        kptDict[kSymbols[4]] = [0.0, -0.5, 0]
        kptDict[kSymbols[5]] = [eta, 1 - nu, 0]
        kptDict[kSymbols[6]] = [1 - eta, nu, 0]
        kptDict[kSymbols[7]] = [eta, -nu, 0]
    else:
        raise Exception("Unknown crystal structure " + crystalStructure + ".")
    return kptDict 
###########
# testing #
###########
def print_kvalues(crystalStructure, avec, kSymbols):
    for i in range(0, len(kSymbols)):
        kval = kSymbol2kValue(crystalStructure, avec, kSymbols[i])
        print(
            "%6s %6s %f %f %f"
            % (crystalStructure, kSymbols[i], kval[0], kval[1], kval[2])
        )
def print_all_bra2avec():
    perm = [[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1], [2, 1, 0]]
    crystalStructure = "CUB"
    avec = bra2avec("CUB")
    kSymbols = ["G", "X", "M", "R"]
    print_kvalues(crystalStructure, avec, kSymbols)
    # print('%s' % 'CUB')
    # print('%f %f %f' % (avec[0,0],avec[0,1],avec[0,2]))
    # print('%f %f %f' % (avec[1,0],avec[1,1],avec[1,2]))
    # print('%f %f %f' % (avec[2,0],avec[2,1],avec[2,2]))
    crystalStructure = "FCC"
    avec = bra2avec("FCC")
    kSymbols = ["G", "K", "L", "U", "W", "X"]
    print_kvalues(crystalStructure, avec, kSymbols)
    # print('%s' % 'FCC')
    # print('%f %f %f' % (avec[0,0],avec[0,1],avec[0,2]))
    # print('%f %f %f' % (avec[1,0],avec[1,1],avec[1,2]))
    # print('%f %f %f' % (avec[2,0],avec[2,1],avec[2,2]))
    crystalStructure = "BCC"
    avec = bra2avec("BCC")
    kSymbols = ["G", "H", "P", "N"]
    print_kvalues(crystalStructure, avec, kSymbols)
    # print('%s' % 'BCC')
    # print('%f %f %f' % (avec[0,0],avec[0,1],avec[0,2]))
    # print('%f %f %f' % (avec[1,0],avec[1,1],avec[1,2]))
    # print('%f %f %f' % (avec[2,0],avec[2,1],avec[2,2]))
    crystalStructure = "TET"
    avec = bra2avec("TET1")
    kSymbols = ["G", "A", "M", "R", "X", "Z"]
    print_kvalues(crystalStructure, avec, kSymbols)
    # print('%s' % 'TET1')
    # print('%f %f %f' % (avec[0,0],avec[0,1],avec[0,2]))
    # print('%f %f %f' % (avec[1,0],avec[1,1],avec[1,2]))
    # print('%f %f %f' % (avec[2,0],avec[2,1],avec[2,2]))
    crystalStructure = "TET"
    avec = bra2avec("TET2")
    kSymbols = ["G", "A", "M", "R", "X", "Z"]
    print_kvalues(crystalStructure, avec, kSymbols)
    # print('%s' % 'TET2')
    # print('%f %f %f' % (avec[0,0],avec[0,1],avec[0,2]))
    # print('%f %f %f' % (avec[1,0],avec[1,1],avec[1,2]))
    # print('%f %f %f' % (avec[2,0],avec[2,1],avec[2,2]))
    crystalStructure = "BCT"
    avec = bra2avec("BCT1")
    kSymbols = ["G", "M", "N", "P", "X", "Z", "Z1"]
    print_kvalues(crystalStructure, avec, kSymbols)
    # print('%s' % 'BCT1')
    # print('%f %f %f' % (avec[0,0],avec[0,1],avec[0,2]))
    # print('%f %f %f' % (avec[1,0],avec[1,1],avec[1,2]))
    # print('%f %f %f' % (avec[2,0],avec[2,1],avec[2,2]))
    crystalStructure = "BCT"
    avec = bra2avec("BCT2")
    kSymbols = ["G", "N", "P", "X", "Z", "S", "S1", "Y", "Y1"]
    print_kvalues(crystalStructure, avec, kSymbols)
    # print('%s' % 'BCT2')
    # print('%f %f %f' % (avec[0,0],avec[0,1],avec[0,2]))
    # print('%f %f %f' % (avec[1,0],avec[1,1],avec[1,2]))
    # print('%f %f %f' % (avec[2,0],avec[2,1],avec[2,2]))
    crystalStructure = "ORC"
    avec = bra2avec("ORC")
    kSymbols = ["G", "R", "S", "T", "U", "X", "Y", "Z"]
    print_kvalues(crystalStructure, avec, kSymbols)
    # print('%s' % 'ORC')
    # print('%f %f %f' % (avec[0,0],avec[0,1],avec[0,2]))
    # print('%f %f %f' % (avec[1,0],avec[1,1],avec[1,2]))
    # print('%f %f %f' % (avec[2,0],avec[2,1],avec[2,2]))
    crystalStructure = "ORCF"
    avec = bra2avec("ORCF1")
    kSymbols = ["G", "L", "T", "Y", "Z", "A", "A1", "X", "X1"]
    print_kvalues(crystalStructure, avec, kSymbols)
    # print('%s' % 'ORCF1')
    # print('%f %f %f' % (avec[0,0],avec[0,1],avec[0,2]))
    # print('%f %f %f' % (avec[1,0],avec[1,1],avec[1,2]))
    # print('%f %f %f' % (avec[2,0],avec[2,1],avec[2,2]))
    crystalStructure = "ORCF"
    avec = bra2avec("ORCF2")
    kSymbols = ["G", "L", "X", "Y", "Z", "C", "C1", "D", "D1", "H", "H1"]
    print_kvalues(crystalStructure, avec, kSymbols)
    # print('%s' % 'ORCF2')
    # print('%f %f %f' % (avec[0,0],avec[0,1],avec[0,2]))
    # print('%f %f %f' % (avec[1,0],avec[1,1],avec[1,2]))
    # print('%f %f %f' % (avec[2,0],avec[2,1],avec[2,2]))
    crystalStructure = "ORCF"
    avec = bra2avec("ORCF3")
    kSymbols = ["G", "L", "T", "Y", "Z", "A", "A1", "X", "X1"]
    print_kvalues(crystalStructure, avec, kSymbols)
    # print('%s' % 'ORCF3')
    # print('%f %f %f' % (avec[0,0],avec[0,1],avec[0,2]))
    # print('%f %f %f' % (avec[1,0],avec[1,1],avec[1,2]))
    # print('%f %f %f' % (avec[2,0],avec[2,1],avec[2,2]))
    crystalStructure = "ORCI"
    avec = bra2avec("ORCI")
    kSymbols = ["G", "R", "S", "T", "W", "Z", "L", "L1", "L2", "X", "X1", "Y", "Y1"]
    print_kvalues(crystalStructure, avec, kSymbols)
    # print('%s' % 'ORCI')
    # print('%f %f %f' % (avec[0,0],avec[0,1],avec[0,2]))
    # print('%f %f %f' % (avec[1,0],avec[1,1],avec[1,2]))
    # print('%f %f %f' % (avec[2,0],avec[2,1],avec[2,2]))
    crystalStructure = "ORCC"
    avec = bra2avec("ORCC")
    kSymbols = ["G", "R", "S", "T", "Y", "Z", "A", "A1", "X", "X1"]
    print_kvalues(crystalStructure, avec, kSymbols)
    # print('%s' % 'ORCC')
    # print('%f %f %f' % (avec[0,0],avec[0,1],avec[0,2]))
    # print('%f %f %f' % (avec[1,0],avec[1,1],avec[1,2]))
    # print('%f %f %f' % (avec[2,0],avec[2,1],avec[2,2]))
    crystalStructure = "HEX"
    avec = bra2avec("HEX1")
    kSymbols = ["G", "A", "H", "K", "L", "M"]
    print_kvalues(crystalStructure, avec, kSymbols)
    # print('%s' % 'HEX1')
    # print('%f %f %f' % (avec[0,0],avec[0,1],avec[0,2]))
    # print('%f %f %f' % (avec[1,0],avec[1,1],avec[1,2]))
    # print('%f %f %f' % (avec[2,0],avec[2,1],avec[2,2]))
    crystalStructure = "HEX"
    avec = bra2avec("HEX2")
    kSymbols = ["G", "A", "H", "K", "L", "M"]
    print_kvalues(crystalStructure, avec, kSymbols)
    # print('%s' % 'HEX2')
    # print('%f %f %f' % (avec[0,0],avec[0,1],avec[0,2]))
    # print('%f %f %f' % (avec[1,0],avec[1,1],avec[1,2]))
    # print('%f %f %f' % (avec[2,0],avec[2,1],avec[2,2]))
    crystalStructure = "RHL"
    avec = bra2avec("RHL1")
    kSymbols = ["G", "F", "L", "L1", "Z", "B", "B1", "P", "P1", "P2", "Q", "X"]
    print_kvalues(crystalStructure, avec, kSymbols)
    # print('%s' % 'RHL1')
    # print('%f %f %f' % (avec[0,0],avec[0,1],avec[0,2]))
    # print('%f %f %f' % (avec[1,0],avec[1,1],avec[1,2]))
    # print('%f %f %f' % (avec[2,0],avec[2,1],avec[2,2]))
    crystalStructure = "RHL"
    avec = bra2avec("RHL2")
    kSymbols = ["G", "F", "L", "Z", "P", "P1", "Q", "Q1"]
    print_kvalues(crystalStructure, avec, kSymbols)
    # print('%s' % 'RHL2')
    # print('%f %f %f' % (avec[0,0],avec[0,1],avec[0,2]))
    # print('%f %f %f' % (avec[1,0],avec[1,1],avec[1,2]))
    # print('%f %f %f' % (avec[2,0],avec[2,1],avec[2,2]))
    crystalStructure = "MCL"
    avec = bra2avec("MCL")
    kSymbols = [
        "G",
        "A",
        "C",
        "D",
        "D1",
        "E",
        "X",
        "Y",
        "Y1",
        "Z",
        "H",
        "H1",
        "H2",
        "M",
        "M1",
        "M2",
    ]
    print_kvalues(crystalStructure, avec, kSymbols)
    # print('%s' % 'MCL')
    # print('%f %f %f' % (avec[0,0],avec[0,1],avec[0,2]))
    # print('%f %f %f' % (avec[1,0],avec[1,1],avec[1,2]))
    # print('%f %f %f' % (avec[2,0],avec[2,1],avec[2,2]))
    crystalStructure = "MCLC"
    avec = bra2avec("MCLC1")
    kSymbols = [
        "G",
        "N",
        "N1",
        "L",
        "M",
        "Y",
        "Y1",
        "Z",
        "F",
        "F1",
        "F2",
        "F3",
        "I",
        "I1",
        "X",
        "X1",
        "X2",
    ]
    print_kvalues(crystalStructure, avec, kSymbols)
    # print('%s' % 'MCLC1')
    # print('%f %f %f' % (avec[0,0],avec[0,1],avec[0,2]))
    # print('%f %f %f' % (avec[1,0],avec[1,1],avec[1,2]))
    # print('%f %f %f' % (avec[2,0],avec[2,1],avec[2,2]))
    crystalStructure = "MCLC"
    avec = bra2avec("MCLC3")
    kSymbols = [
        "G",
        "I",
        "M",
        "N",
        "N1",
        "X",
        "Z",
        "F",
        "F1",
        "F2",
        "H",
        "H1",
        "H2",
        "Y",
        "Y1",
        "Y2",
        "Y3",
    ]
    print_kvalues(crystalStructure, avec, kSymbols)
    # print('%s' % 'MCLC3')
    # print('%f %f %f' % (avec[0,0],avec[0,1],avec[0,2]))
    # print('%f %f %f' % (avec[1,0],avec[1,1],avec[1,2]))
    # print('%f %f %f' % (avec[2,0],avec[2,1],avec[2,2]))
    crystalStructure = "MCLC"
    avec = bra2avec("MCLC5")
    kSymbols = [
        "G",
        "L",
        "M",
        "N",
        "N1",
        "X",
        "Z",
        "F",
        "F1",
        "F2",
        "H",
        "H1",
        "H2",
        "I",
        "I1",
        "Y",
        "Y1",
        "Y2",
        "Y3",
    ]
    print_kvalues(crystalStructure, avec, kSymbols)
    # print('%s' % 'MCLC5')
    # print('%f %f %f' % (avec[0,0],avec[0,1],avec[0,2]))
    # print('%f %f %f' % (avec[1,0],avec[1,1],avec[1,2]))
    # print('%f %f %f' % (avec[2,0],avec[2,1],avec[2,2]))